Skip to main content

Electrolytes, History

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 601 Accesses

Introduction

Salts play an important role in the development of mankind. Probably since more than 10,000 years, man uses sodium chloride to conserve food. It was often called “the white gold,” an expression that highlights the importance and value of this chemical. Workers were in medieval times paid with salt, hence the word “salary” for their income. Many other processes like leather tanning with mineral salts depended and still depend on salts. Acids (vinegar) and bases (soaps) also have played important roles in human culture. And in general, life on earth is not imaginable without electrolytes.

Still, the molecular composition of electrolytes in general and their behavior in solvents is known only since several decades, and still its properties are not fully understood. Man is capable of flying to the moon, but the prediction of activity coefficients of NaCl in water is still a challenge.

History

The history of scientific comprehension of electrolytes begins in the nineteenth...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berzelius JJ (1819) Essai sur la théorie des proportions chimiques et sur l’influence chimique de l’électricité. Paris, p 98

    Google Scholar 

  2. Faraday M (1834) On electrochemical decomposition (Reprinted in [4], pp 11–44, Original paper: Faraday M (1834) Experimental researches in electricity. Seventh series. Phil Trans R Soc Lond 124:77–122)

    Google Scholar 

  3. Hittorf W (1853) Über die Wanderung der Ionen während der Elektrolyse. Pogg Ann 89:177–211

    Google Scholar 

  4. Goodwin HM (Ed) (1899) The fundamental laws of electrolytic conduction. Memoirs by Faraday, Hittorf and F Kohlrausch. Harper & brothers, New York/London

    Google Scholar 

  5. Pfeffer W (1877) Osmotische Untersuchungen. Studien zur Zellmechanik, Leipzig, Wilhem Engelmann (Reprint 1921)

    Google Scholar 

  6. Hofmeister F (1888) Ueber die wasserentziehende Wirkung der Salze. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie 25:1–30; Citation taken from: Kunz W, Henle J, Ninham BW (2004) Zur Lehre von der Wirkung der Salze (About the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Op Coll Interf Sci 9:37

    Google Scholar 

  7. Hoff JH (1884) Etudes de dynamique chimique, Frederik Muller, Oxford University; Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen (1887) Z phys Chem 1:481–508; see also: Planck M (1887) Ueber die molare Konstitution verdünnter Lösungen. Z phys Chem 1:577–582

    Google Scholar 

  8. Arrhenius S (1887) Über die Dissociation der in Wasser gelösten Stoffe. Z Phys Chem 1:631–648

    Google Scholar 

  9. Ostwald W (1988) Über die Dissociationstheorie der Elektrolyte. Z Phys Chem 2:270–283

    Google Scholar 

  10. Kohlrausch F (1876) On the conductivity of electrolytes dissolved in water in relation to the migration of their compounds in [4], pp 83–92; Kohlrausch FWG, Holborn LFC (1898) Das Leitvermögen der Elektrolyte, insbesondere der Lösungen. Methoden, Resultate und chemische Anwendungen. Teubner BG, Leipzig

    Google Scholar 

  11. Nernst WH (1889) Die elektromotorische Wirksamkeit der Ionen. Z Phys Chem Stöchiom Verwandtschaftslehre 4:129–181

    Google Scholar 

  12. Walden P (1924) Elektrochemie nichtwässeriger Lösungen. Bredigs Handb d angew physikal Chemie, 13. Bd. Barth, Leipzig

    Google Scholar 

  13. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. Physik Z 24:185–206

    CAS  Google Scholar 

  14. Bjerrum N (1926) Untersuchungen über Ionenassoziation. Kgl Danske Vidensk Math-Fysiske Medd VIII 9:1–47

    Google Scholar 

  15. Onsager L, Fuoss RM (1932) Irreversible processes in electrolytes. Diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes. J Phys Chem 36:2689–2778

    CAS  Google Scholar 

  16. Ornstein LS, Zernike F (1914) Accidental deviations of density and opalescence at the critical point of a single substance. Proc Acad Sci (Amsterdam) 17:793–804

    Google Scholar 

  17. Ramanathan PS, Friedman HL (1971) Study of a refined model for aqueous 1-1- electrolytes. J Chem Phys 54:1086–1099

    CAS  Google Scholar 

  18. Pitzer KS (1979) Theory: ion interaction approach. In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions, vol 1. CRC Press, Boca Raton, pp 158–208

    Google Scholar 

  19. Bernard O, Kunz W, Turq P, Blum L (1992) Self-diffusion in electrolyte solutions using the mean spherical approximation. J Phys Chem 96:398–403; Conductance in electrolyte solutions using the mean spherical approximation. ibid 96:3833–3840

    Google Scholar 

  20. Heinzinger K (1985) Computer simulations of aqueous electrolyte solutions. Physica 131B:196–216

    Google Scholar 

  21. Levesque D, Weis JJ, Hansen JP (1986) In: Binder K (ed) Monte Carlo methods in statistical physics (topics in current physics), 2nd edn. Springer, Berlin

    Google Scholar 

  22. Fyta M, Kalcher I, Dzubiella J, Vrbka L, Netz RR (2010) Ionic force field optimization based on single-ion and ion-pair solvation properties. J Chem Phys 132:024911/1–024911/10

    Google Scholar 

  23. Palinkas G, Kalman E (1981) X-ray diffraction on electrolyte solutions in the low angle range. Z Naturforsch Teil A 36A:1367–1370

    CAS  Google Scholar 

  24. Neilson GW, Enderby JE (1979) Neutron and x-ray diffraction studies of concentrated aqueous electrolyte solutions. Annu Rep Prog Chem Sect C Phys Chem 76:185–220

    Google Scholar 

  25. Buchner R, Barthel J (2001) Dielectric relaxation in solutions. Annu Rep Prog Chem Sect C Phys Chem 97:349–382

    CAS  Google Scholar 

  26. Tielrooij KJ, Garcia-Araez N, Bonn M, Bakker HJ (2010) Cooperativity in ion hydration. Science 328:1006–1009

    CAS  Google Scholar 

  27. Helmholtz H (1853) Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys Chem (Leipzig) 165 (ser 2, vol 89, ser 3, vol 29):211–233

    Google Scholar 

  28. Gouy LG (1910) Gouy. Sur la constitution de la charge électrique à la surface d’un électrolyte. J Phys Théor Appl Ser 4 9:457–467

    CAS  Google Scholar 

  29. Chapman DL (1913) A contribution to the theory of electrocapillarity. Lond Edinb Dublin Philos Mag J Science Ser 6 25:475–481

    Google Scholar 

  30. Stern O (1924) Zur Theorie der Elektrolytischen Doppelschicht. Z Elektrochem Angew Phys Chem 30:508–516

    CAS  Google Scholar 

  31. Motschmann H, Koelsch P (2010) Linear and non-linear optical techniques to probe ion profiles at the air-water interface. In [33], pp 119–147

    Google Scholar 

  32. Padmanabhan V, Girard L, Daillant J, Belloni L (2010) X-ray studies of ion specific effects. In [33], pp 149–169

    Google Scholar 

  33. Jungwirth P, Winter B (2008) Ions at aqueous interfaces: from water surface to hydrated proteins. Annu Rev Phys Chem 59:343–366

    CAS  Google Scholar 

  34. Kunz W (ed) (2010) Specific ion effects. World Scientific, Singapore

    Google Scholar 

  35. Krauss D, Eisenberg B, Gillespie D (2011) Selectivity sequences in a model calcium channel: role of electrostatic field strength. Eur Biophys J 40:775–782

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Kunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kunz, W. (2014). Electrolytes, History. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_10

Download citation

Publish with us

Policies and ethics