Skip to main content

Activity Coefficients

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 963 Accesses

Basic Definitions

At constant temperature and pressure, the chemical potential of a solute component k in a solution can be written as

$$ {\upmu_{{k}}} = {\upmu_{{k}}}^{\infty } + {\mathrm{ R}{T}\mathrm{ ln}}\ {{\mathrm{ a}}_{{k}}} = {\upmu_{{k}}}^{{\infty (\mathrm{ m})}} + {\mathrm{ R}{T}\mathrm{ ln}}\ {{\mathrm{ m}}_{{k}}}{\upgamma_{{k}}} $$

where μ k is its chemical potential at infinite dilution, m is molality (moles of solute per kg of solvent), R is the gas constant, T the absolute temperature, and γ k the activity coefficient in the molality scale at a given molality. Note that the reference state is not the pure solution (most of the pure electrolytes are solid and hence in a different aggregation state) but the infinitely dilute solution:

$$ \eqalign{{\upmu_{{k}}}^{{\infty (\mathrm{ m})}} = & \;\mathrm{ li}{{\mathrm{ m}}_{{\mathrm{ x}\ (\mathrm{ solvent}) -> 1}}}({\upmu_{{k}}} - {\mathrm{ R}{T}\mathrm{ ln}}\ {{\mathrm{ m}}_{{k}}}{\upgamma_{{k}}}); \cr & \mathrm{...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pitzer KS (ed) (1991) Activity coefficients in electrolyte solutions, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  2. Robinson RA, Stokes RH (2003) Electrolyte solutions, 2nd rev edn. Dover, New York

    Google Scholar 

  3. Hamer WJ, Wu YC (1972) Osmotic coefficients and mean activity coefficients of Uni-univalent electrolytes in water at 25 °C. J Phys Chem Rev Data 1:1047–1099

    CAS  Google Scholar 

  4. Luckas M, Krissmann J (2001) Thermodynamik der Elektrolytlösungen. Springer, Berlin

    Google Scholar 

  5. Lee LL (2008) Molecular thermodynamics of electrolyte solutions. World Scientific Publishing, Singapore

    Google Scholar 

  6. Pitzer KS, Kim JJ (1974) Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J Am Chem Soc 96:5701–5707

    CAS  Google Scholar 

  7. Clegg SL, Pitzer KS (1992) Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes. J Phys Chem 96:3513–3520

    CAS  Google Scholar 

  8. http://jess.murdoch.edu.au/jess_home.htm

  9. May PM, Rowland D, Königsberger E, Hefter, G (2010) JESS, a joint expert speciation system – IV: a large database of aqueous solution physicochemical properties with an automatic means of achieving thermodynamic consistency. Talanta 81:142–148

    CAS  Google Scholar 

  10. http://www.cere.dtu.dk/Expertise/Data_Bank.aspx

  11. http://www.dechema.de/en/detherm.html

  12. Ivanova EF, Aleksandrov VV (1964) Thermodynamic properties of electrolytes in nonaqueous solutions. XV. Solutions of cesium iodide in methanol and cadmium chloride in 1-butanol. Zhurnal Fizicheskoi Khimii 38:878–84

    CAS  Google Scholar 

  13. Barthel J, Lauermann G, Neueder R (1986) Vapor pressure measurements on non-aqueous electrolyte solutions. Part 2. Tetraalkylammonium salts in methanol. Activity coefficients of various 1–1 electrolytes at high concentrations. J Solution Chem 10:851–867

    Google Scholar 

  14. Barthel J, Neueder R, Poepke H, Wittmann H (1999) Osmotic coefficients and activity coefficients of nonaqueous electrolyte solutions. Part 2. Lithium perchlorate in the aprotic solvents acetone, acetonitrile, dimethoxyethane, and dimethylcarbonate. J Solution Chem 28:489–503

    CAS  Google Scholar 

  15. Nasirzadeh K, Neueder R, Kunz W (2005) Vapor pressures, osmotic and activity coefficients of electrolytes in protic solvents at different temperatures. 3. Lithium bromide in 2-propanol. J Solution Chem 34:9–24

    CAS  Google Scholar 

  16. Tsurko EN, Neueder R, Kunz W (2007) Water activity and osmotic coefficients in solutions of glycine, glutamic acid, histidine and their salts at 298.15 K and 310.15 K. J Solution Chem 36:651–672

    CAS  Google Scholar 

  17. Barthel J, Krienke H, Kunz W (1998) Physical chemistry of electrolyte solutions. Modern aspects. Springer, New York

    Google Scholar 

  18. Vrbka L, Lund M, Kalcher I, Dzubiella J, Netz RR, Kunz W (2009) Ion-specific thermodynamics of multicomponent electrolytes: a hybrid HNC/MD approach. J Chem Phys 131:154109–1–12

    Google Scholar 

  19. Outhwaite CW, Bhuiyan LB, Vlachy V, Hribar-Lee B (2010) Activity coefficients of an electrolyte in a mixture with a high density neutral component. J Chem Eng Data 55:4248–4254

    CAS  Google Scholar 

  20. Kalyuzhnyi YV, Vlachy V, Dill KA (2010) Aqueous alkali halide solutions: can osmotic coefficients be explained on the basis of the ionic sizes alone? Phys Chem Chem Phys 12:6260–6266

    CAS  Google Scholar 

  21. Lu X, Zhang L, Wang Y, Shi J, Maurer G (1996) Prediction of activity coefficients of electrolytes in aqueous solutions at high temperatures. Ind Eng Chem Res 35:1777–1784

    CAS  Google Scholar 

  22. Chen CC, Britt HI, Boston JF, Evans LB (1982) Local composition model for excess Gibbs energy of electrolyte systems. Part I: single solvent, single completely dissociated electrolyte systems. AIChE J 28:588–596

    CAS  Google Scholar 

  23. Simonin JP, Bernard O, Blum L (1999) Ionic solutions in the binding mean spherical approximation: thermodynamic properties of mixtures of associating electrolytes. J Phys Chem B 103:699–704

    CAS  Google Scholar 

  24. Papaiconomou N, Simonin JP, Bernard O, Kunz W (2002) MSA-NRTL model for the description of the thermodynamic properties of electrolyte solutions. Phys Chem Chem Phys 4:4435–4443

    CAS  Google Scholar 

  25. Gering KL, Lee LL, Landis LH, Savidge JL (1989) A molecular approach to electrolyte solutions: phase behavior and activity coefficients for mixed-salt and multisolvent systems. Fluid Phase Equilib 48:111–139

    CAS  Google Scholar 

  26. Held C, Cameretti LF, Sadowski G (2008) Modeling aqueous electrolyte solutions. Fluid Phase Equilib 270:87–96

    CAS  Google Scholar 

  27. Held C, Sadowski G (2009) Modeling aqueous electrolyte solutions. Part 2. Weak electrolytes. Fluid Phase Equilib 279:141–148

    CAS  Google Scholar 

  28. Rumpf B, Xia J, Maurer G (1998) Solubility of carbon dioxide in aqueous solutions containing acetic acid or sodium hydroxide in the temperature range from 313 to 433 K and at total pressures up to 10 MPa. Ind Eng Chem Res 37:2012–2019

    CAS  Google Scholar 

  29. Papaiconomou N, Simonin JP, Bernard O, Kunz W (2003) Description of vapor–liquid equilibria for CO2 in electrolyte solutions using the mean spherical approximation. J Phys Chem B 107:5948–5957

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Kunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kunz, W. (2014). Activity Coefficients. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_1

Download citation

Publish with us

Policies and ethics