Encyclopedia of the Sciences of Learning

2012 Edition
| Editors: Norbert M. Seel

Initial State Learning

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-1428-6_537



The aim of initial state learning is to establish a learning mechanism, which can be modeled as a mapping \( M:x \to y \)

This is a preview of subscription content, log in to check access.


  1. Carpenter, R. H. S. (2002). Neurophysioplogy. London: Hodder Arnold.Google Scholar
  2. Francis, B. A., & Wonham, W. M. (1976). The internal model principle of control theory. Automatica, 12(5), 457–465.CrossRefGoogle Scholar
  3. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727.CrossRefGoogle Scholar
  4. Maass, W., Natschlager, T., & Markram, H. (2002). Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computations, 14, 2531–2560.CrossRefGoogle Scholar
  5. Spall, J. C. (2003). Introduction to stochastic search and optimization. Hoboken: Wiley-Interscience.CrossRefGoogle Scholar
  6. Xu, J.-X., & Tan, Y. (2003). Linear and nonlinear iterative learning control. Germany: Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore