# Encyclopedia of Operations Research and Management Science

2013 Edition
| Editors: Saul I. Gass, Michael C. Fu

# Parametric Programming

• Tomas Gal
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-1153-7_733

## Introduction

The meaning of a parameter as used here is best explained by a simple example. Recall that a parabola can be expressed as follows: y = ax2, a ≠ 0. Setting a = 1, a parabola is obtained that has a different shape from the parabola when setting, for example, a = 5. In both cases, however, there are parabolas that obey specific relationships; only the shapes are different. Hence, the parabola y = ax2 describes a family of parabolas and the parameter a specifies the shape.

Consider the general mathematical-programming problem:
$${\rm Max}\ z = f({x})$$
This is a preview of subscription content, log in to check access.

## References

1. Ashram, H. (2007). Construction of the largest sensitivity region for general linear programs. Applied Mathematics and Computation, 189, 1435–1447.
2. Bank, B., Guddat, J., Klatte, D., Kummer, B., & Tammer, T. (1982). Nonlinear parametric optimization. Berlin: Akademie Verlag.
4. Dawande, M. W., & Hooker, J. N. (2000). Inference-based sensitivity analysis for mixed integer/linear programming. Operations Research, 48, 623–634.
5. Dinkelbach, W. (1969). Sensitivitätsanalysen und parametrische Programmierung. Berlin: Springer Verlag.
6. Drud, A. S., & Lasdon, L. (1997). Nonlinear programming. In T. Gal & H. J. Greenberg (Eds.), Advances in sensitivity analysis and parametric programming. Norwell, MA: Kluwer.Google Scholar
7. Faisca, N. P., Kosmidis, V. D., Rustem, B., & Pistikopoulos, E. N. (2009). Global optimization of multi-parametric MILP problems. Journal Global Optimization, 45(1), 131–151.
8. Filippi, C. (2005). A fresh view on the tolerance approach to sensitivity analysis in linear programming. European Journal of Operational Research, 167, 1–19.
9. Gal, T. (1973). Betriebliche Entscheidungsprobleme, Sensitivitätsanalyse und parametrische Programmierung. Berlin: W. de Gruyter.Google Scholar
10. Gal, T. (1979). Postoptimal analyses, parametric programming and related topics. New York: McGraw Hill.Google Scholar
11. Gal, T. (1980). A ‘historiogramme’ of parametric programming. Journal of the Operational Research Society, 31, 449–451.
12. Gal, T. (1983). A note on the history of parametric programming. Journal of the Operational Research Society, 34, 162–163.
13. Gal, T. (1993). Putting the LP survey into perspective. OR/MS Today, 19(6), 93.Google Scholar
14. Gal, T. (1994a). Selected bibliography on degeneracy. Annals Operations Research.Google Scholar
15. Gal, T. (1994b). Postoptimal analyses and parametric programming. Berlin: W. de Gruyter. Revised and updated edition.Google Scholar
16. Gal, T., & Greenberg, H. J. (Eds.). (1997). Advances in sensitivity analysis and parametric programming. Norwell, MA: Kluwer.Google Scholar
17. Greenberg, H. J. (1993). A computer-assisted analysis system for mathematical programming models and solutions: A user's guide for ANALYZE. Norwell, MA: Kluwer.
18. Gass, S. I. (1985). Linear programming (5th ed.). New York: McGraw-Hill.Google Scholar
19. Gass, S. I., & Saaty, T. L. (1955). The parametric objective function. Naval Research Logistics Quarterly, 2, 39–45.
20. Guddat, J., Guerra Vazquez, F., & Jongen, H. T. (1991). Parametric optimization: Singularities, path following and jumps. Stuttgart/New York: B. G. Teubner/Wiley.Google Scholar
21. Hadigheh, A. G., Mirnia, K., & Terlaky, T. (2007). Active constraint set invariancy sensitivity analysis in linear optimization. JOTA, 133, 303–315.
22. Hladik, M. (2008a). Additive and multiplicative tolerance in multiobjective linear programming. Operations Research Letters, 36, 393–396.
23. Hladik, M. (2008b). Computing the tolerance in multiobjective linear programming. Optimization Methods and Software, 23, 731–739.
24. Hladik, M. (2010). Multiparametric linear programming: Support set and optimal partition invariancy. European Journal of Operational Research, 202, 25–31.
25. Kheirfam, B. (2010). Sensitivity analysis in multi-parametric strictly convex quadratic optimization. Matem. Vesnik, 62, 95–107.Google Scholar
26. Kruse, H.-J. (1986). Degeneracy graphs and the neighborhood problem (Lecture Notes in economics and mathematical systems No. 260). Berlin: Springer Verlag.
27. Manne, A. S. (1953). Notes on parametric linear programming, RAND Report P-468. Santa Monica, CA: The Rand Corporation.Google Scholar
28. Ravi, N., & Wendell, R. E. (1988). Tolerance approach to sensitivity analysis in network linear programming. Networks, 18, 159–181.
29. Saaty, T. L., & Gass, S. I. (1954). The parametric objective function, Part I. Operations Research, 2, 316–319.Google Scholar
30. Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. New York: Wiley.Google Scholar
31. Wendell, R. E. (1985). The tolerance approach to sensitivity analysis in linear programming. Management Science, 31, 564–578.
32. Wendell, R. E. (2004). Tolerance sensitivity and optimality bounds in linear programming. Management Science, 50, 797–803.