Encyclopedia of Operations Research and Management Science

2013 Edition
| Editors: Saul I. Gass, Michael C. Fu

Global Optimization

  • Hoang Tuy
  • Steffen Rebennack
  • Panos M. Pardalos
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-1153-7_1142

Introduction

Consider an optimization problem of the general form
$$ \text{min}\left\{ {f(x)|\:{g_i}(x) \le 0, i = 1, \ldots, m,\;x \in X} \right\}\quad {\text{(P)}} $$
This is a preview of subscription content, log in to check access.

References

  1. Ben-Tal, A., & Nemirovski, A. (2001). Lectures on modern convex optimization. Philadelphia: SIAM/MPS.CrossRefGoogle Scholar
  2. Chen, P.-C., Hansen, P., Jaumard, B., & Tuy, H. (1992). Weber’s Problem with attraction and repulsion. Journal of Regional Science, 32, 467–486.CrossRefGoogle Scholar
  3. Floudas, C. A. (2000). Deterministic global optimization. Dordrecht/Boston/London: Kluwer Academic Publishers.CrossRefGoogle Scholar
  4. Floudas, C. A., & Gounaris, C. E. (2009). A review of recent advances in global optimization. Journal of Global Optimization, 45(1), 3–38.CrossRefGoogle Scholar
  5. Floudas, C. A., & Pardalos, P. M. (Eds.). (1999). Handbook of test problems in local and global optimization. Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  6. Floudas, C. A., & Pardalos, P. M. (Eds.). (2003). Frontiers in global optimization. Kluwer Academic.Google Scholar
  7. Frenk, J. B. G., & Schaible, S. (2004). Fractional programming. Erasmus Research Institute of Management (ERIM), ERS-2004-074-LIS.Google Scholar
  8. Holmberg, K., & Tuy, H. (1993). A production-transportation problem with stochastic demands and concave production cost. Mathematical Programming, 85, 157–179.CrossRefGoogle Scholar
  9. Horst, R., & Pardalos, P.M. (Eds.). (1995). Handbook of global optimization. Kluwer Academic.Google Scholar
  10. Horst, R., & Tuy, H. (1996). Global optimization (Deterministic approaches). (3rd ed.). Springer.Google Scholar
  11. Konno, H., Thach, P. T., & Tuy, H. (1997). Optimization on low rank nonconvex structures. Kluwer Academic.Google Scholar
  12. Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26, 369–395.CrossRefGoogle Scholar
  13. Pardalos, P. M., & Coleman, T. F. (Eds.). (2009). Lectures on global optimization: Vol. 55. Fields institute communications series. American Mathematical Society.Google Scholar
  14. Pardalos, P. M., & Romeijn, H. E. (Eds.). (2002). Handbook of global optimization. Springer.Google Scholar
  15. Rebennack, S., Kallrath, J., & Pardalos, P. M. (2009). Column enumeration based decomposition techniques for a class of non-convex MINLP problems. Journal of Global Optimization, 43(2–3), 277–297.CrossRefGoogle Scholar
  16. Rebennack, S., Pardalos, P. M., Pereira, M. V. F, & Iliadis, N. A. (Eds.), (2010a). Handbook of power systems I. Energy Systems series, Springer.Google Scholar
  17. Rebennack, S., Pardalos, P. M., Pereira, M. V. F., & Iliadis, N. A. (Eds.). (2010b). Handbook of power systems II. Energy Systems series, Springer.Google Scholar
  18. Sherali, H. D., & Adams, W. P. (1999). A reformulation–linearization technique for solving discrete and continuous nonconvex problems. Dordrecht/Boston/London: Kluwer Academic Publishers.CrossRefGoogle Scholar
  19. Stancu-Minasian, I. M. (1997). Fractional programming: Theory, methods and applications. Dordrecht/Boston/London: Kluwer Academic Publishers.CrossRefGoogle Scholar
  20. Thach, P. T., Konno, H., & Yokota, D. (1996). Dual approach to minimization on the set of pareto-optimal solutions. Journal of Optimization Theory and Applications, 88(3), 689–707.CrossRefGoogle Scholar
  21. Tuy, H. (1998). Convex analysis and global optimization. Kluwer (Springer).Google Scholar
  22. Tuy, H. (2010). DC-optimization and robust global optimization. Journal of Global Optimization, 47, 485–501. doi:10.1007/s10898-009-9475-2.CrossRefGoogle Scholar
  23. Wen, U.-P., & Hsu, S.-T. (1991). Linear bilevel programming problems – A review. Journal of the Operational Research Society, 42, 125–133.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hoang Tuy
    • 1
  • Steffen Rebennack
    • 2
  • Panos M. Pardalos
    • 3
  1. 1.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Division of Economics & BusinessColorado School of MinesGoldenUSA
  3. 3.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA