Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Hazardous Waste Incineration Ashes and Their Utilization

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_97

Definition of the Subject

This chapter deals with hazardous solid residues , usually called ashes , from waste incineration. What is to be considered hazardous in this context shows geographical and temporal variability. Currently, hazardous waste incineration ashes are mostly dumped, or disposed of, in landfills or ash lagoons. There is however also substantial, but geographically variable, utilization of such ashes, mostly in construction, including civil engineering (e.g., in roads and embankments) and there have been proposals for wider utilization. Much research has been done on better and wider utilization of hazardous waste incineration ashes, but little thereof has found its way to actual commercial practice. At the end of the chapter, the matter will be raised whether current waste incineration can be considered sustainable and which changes may lead to a more sustainable management of wastes that are currently incinerated.


Wastes are incinerated on a large scale,...

This is a preview of subscription content, log in to check access.


  1. 1.
    Johannessen KM (1996) The regulation of municipal waste incineration ash: a legal review and update. J Hazard Mater 47:383–393CrossRefGoogle Scholar
  2. 2.
    Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recycl 43:313–336CrossRefGoogle Scholar
  3. 3.
    Cyr M, Coutand M, Clastres PJ (2007) Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem Concr Res 37:1278–1289CrossRefGoogle Scholar
  4. 4.
    Murakami T, Suzuki Y, Nagasawa H, Yamamoto T, Koseki T, Hirose H, Okamoto S (2009) Combustion characteristics of sewage sludge in an incineration plant to energy recovery. Fuel Process Technol 90:778–783CrossRefGoogle Scholar
  5. 5.
    Sawell SE, Chandler AJ, Eighmy TT, Hartlen J, Hjelmar O, Kosson D, van der Sloot HA, Vehlow J (1995) An international perspective on the characterization and management of residues from MSW incinerators. Biomass Bioenergy 9:377–386CrossRefGoogle Scholar
  6. 6.
    Römbke J, Moser T, Moser H (2009) Ecotoxicological characterization of 12 incineration ashes using 6 laboratory tests. Waste Manage 29:2475–2482CrossRefGoogle Scholar
  7. 7.
    Gidarakos E, Petrantonaki M, Anastasadou K, Schramm K (2009) Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste. J Hazard Mater 172:935–942CrossRefGoogle Scholar
  8. 8.
    Coutand M, Cyr M, Deydier E, GR Clastres (2008) Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications. J Hazard Mater 150:522–532CrossRefGoogle Scholar
  9. 9.
    Karamalidis AK, Voudrias EA (2009) Leaching and immobilization behavior of Zn and Cr from cement-based stabilization/solidification of ash produced from incineration of refinery oily sludge. Environ Eng Sci 26:81–96CrossRefGoogle Scholar
  10. 10.
    Sakanakura H (2005) Diffusion test of 20 kinds of waste molten slags and competitive materials. J Mater Cycles Waste Manage 7:71–77CrossRefGoogle Scholar
  11. 11.
    Chiang K, Hu Y (2010) Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Manage. doi:10.1016/j.wasman.2009.12.009Google Scholar
  12. 12.
    Tian S, Yu M, Wang W, Wang Q, Wu Z (2009) Investigating the speciation of copper in secondary fly ash by x-ray absorption spectroscopy. Environ Sci Technol 43:9084–9088CrossRefGoogle Scholar
  13. 13.
    Donatello S, Tyrer M, Cheeseman CR (2010) EU landfill waste acceptance criteria and EU hazardous waste directive compliance testing of incinerated sewage sludge ash. Waste Manage 20:63–71CrossRefGoogle Scholar
  14. 14.
    Nie Y (2008) Development and prospects of municipal solid waste (MSW) incineration in China. Front Environ Sci Eng Chin 2:1–7CrossRefGoogle Scholar
  15. 15.
    Barbosa R, Lapa N, Boavida D, Lopes H, Gulyurtlu I, Mendes B (2009) Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes. J Hazard Mater 170:902–919CrossRefGoogle Scholar
  16. 16.
    Wiles CC (1996) Municipal solid waste combustion ash: state-of-the-knowledge. J Hazard Mater 47:325–346CrossRefGoogle Scholar
  17. 17.
    Reich J (2003) Slag from hazardous waste incineration: reduction of heavy metal leaching. Waste Manage Res 21:110–118CrossRefGoogle Scholar
  18. 18.
    Zhao I, Zhang F, Chen M, Liu Z, Wu DBJ (2010) Typical pollutants in bottom ashes from a medical waste incinerator. J Hazard Mater 173:181–185CrossRefGoogle Scholar
  19. 19.
    Chandler AJ, Eighmy TT, Hartlen J, Hjelmar O, Kosson DS, Sawell SE, van der Sloot HA, Vehlow J (1997) Municipal solid waste incinerator residues. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Durnusoglu E, Bakoglu M, Karademir A, Kirli L (2009) Adsorbable organic halogens (AOX) in solid residues from hazardous and clinical waste incineration. J Environ Sci Health A 41:1699–1714Google Scholar
  21. 21.
    Neuer-Etscheidt K, Nordsieck HO, Liu Y, Kettrup A, Zimmermann R (2006) PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut down processes. Environ Sci Technol 40:342–349CrossRefGoogle Scholar
  22. 22.
    Rubli S, Medilanski E, Belevi H (2000) Characterization of total organic carbon in solid residues provides insight into sludge incineration processes. Environ Sci Technol 34:1772–1777CrossRefGoogle Scholar
  23. 23.
    Quina MJ, Bordado JC, Quinta-Ferreira RM (2008) Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manage 28:2097–2121CrossRefGoogle Scholar
  24. 24.
    Freyssinet P, Piantone P, Azaroual M, Itard Y, Clozel-Lecloup B, Guyonnet D, Baubron JC (2002) Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Manage 22:159–172CrossRefGoogle Scholar
  25. 25.
    Dugenies S, Combrisson J, Casablanca H, Grenier-Loustalot MF (1999) Municipal solid waste incineration bottom ash: characterization and kinetic studies of organic matter. Environ Sci Technol 33:1110–1115CrossRefGoogle Scholar
  26. 26.
    Liu Y, Li Y, Li X, Jiang Y (2008) Leaching behavior of heavy metals and PAHs from MSWI bottom ash in a long-term static immersing experiment. Waste Manage 28:1126–1136CrossRefGoogle Scholar
  27. 27.
    Okrent D (1999) On intergenerational equity and its clash with intragenerational equity and on the need for policies to guide regulation of disposal of wastes and other activities posing very long-term risks. Risk Anal 19:877–901Google Scholar
  28. 28.
    Dellinger B, D’Alessio AD, D’Anna AD, Ciajolo A, Gullett B, Henry H, Keener M, Lighty J, Lomicki S, Lucas D, Oberdörster G, Pitea D, Suk W, Sarofim A, Smith KR, Stoeger T, Tolbert P, Wyzga R, Zimmermann R (2008) Combustion byproducts and their health effects. Environ Eng Sci 25:1107–1114CrossRefGoogle Scholar
  29. 29.
    Shih S, Wang Y, Chang J, Jang J, Kuo F, Wang L, Chang-Chien G (2006) Comparisons of levels of polychlorinated dibenzo-p-dioxins/benzofurans in the surrounding environment and workplace of two municipal solid waste incinerators. J Hazard Mater B 137:1817–1830CrossRefGoogle Scholar
  30. 30.
    Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state on nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  31. 31.
    Chen H, Chen I, Chia T (2010) Occupational exposure and DNA strand breakage of workers in bottom ash recovery and fly ash treatment plants. J Hazard Mater 174:23–27CrossRefGoogle Scholar
  32. 32.
    Lin K, Chen B (2006) Understanding biotoxicity for reusability of municipal solid waste incinerator (MSWI) ash. J Hazard Mater A 138:9–15CrossRefGoogle Scholar
  33. 33.
    Chou J, Wey M, Liang H, Chang S (2009) Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators. J Hazard Mater 168:197–202CrossRefGoogle Scholar
  34. 34.
    Takeuchi M, Kawahata H, Gupta LP, Itouga M, Sakakibara H, Ohta H, Komai T, Ono Y (2009) Chemistry of fly ash and cyclone ash leachate from waste materials and effects of ash leachates on bacterial growth, nitrogen–transformation activity, and metal accumulation. J Hazard Mater 165:967–973CrossRefGoogle Scholar
  35. 35.
    Shoji R, Nakayama H, Sakai Y, Mohri S, Yamada M (2008) Evaluation of the ecotoxicity of solid wastes using rapid leaching test and bioassays. J Environ Sci Health A 43:1048–1053CrossRefGoogle Scholar
  36. 36.
    Triffault-Bouchet G, Clement B, Blake G (2005) Ecotoxicological assessment of pollutant flux released from bottom ash reused in road construction. Aquat Ecosyst Health Manage 8:405–414CrossRefGoogle Scholar
  37. 37.
    Reijnders L (2009) Are soil pollution risks established by governments the same as actual risks? Appl Environ Soil Sci ID 237038:1–7Google Scholar
  38. 38.
    Clement B, Triffault-Bouchet G, Lottmann A, Carbonel J (2005) Are percolates released from solid waste incineration bottom ashes safe for lentic ecosystems? A laboratory ecotoxicological approach based on 100 litre indoor microcosms. Aquat Ecosyst Health Manage 8:427–439CrossRefGoogle Scholar
  39. 39.
    Michalzik B, Ilgen G, Hertel F, Hantsch S, Bilitewski B (2007) Emissions of organo-metal compounds via the leachate and gas pathway from two differently pre-treated municipal waste materials – a landfill study. Waste Manage 27:497–509CrossRefGoogle Scholar
  40. 40.
    Sabbas T, Poletti A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Ambicher S, Klein R, Lechner P (2003) Management of municipal solid waste incineration residues. Waste Manage 23:61–88CrossRefGoogle Scholar
  41. 41.
    Kim Y, Osako M (2004) Effect of adsorption capacity of dissolved humic matter on leachability of dioxins from raw and treated fly ashes of municipal solid waste incinerators. Arch Environ Contam Toxicol 46:8–16CrossRefGoogle Scholar
  42. 42.
    Todorovic J, Ecke H (2006) Treatment of MSWI residues for utilization as secondary construction minerals: a review of methods. Miner Energy 20(4–5):45–59CrossRefGoogle Scholar
  43. 43.
    Lidelöw S, Lagerkvist A (2007) Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction. Waste Manage 27:1356–1365CrossRefGoogle Scholar
  44. 44.
    Apul D, Gardner K, Eighmy T, Linder E, Frizzell T, Roberson R (2005) Probabilistic modeling of one-dimensional water movement and leaching from highway embankments containing secondary materials. Environ Eng Sci 22:156–169CrossRefGoogle Scholar
  45. 45.
    Kosson DS, van der Sloot HA, Sanchez F, Garrabrants AC (2002) An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ Eng Sci 19:159–204CrossRefGoogle Scholar
  46. 46.
    Dabo D, Badreddine R, de Windt L, Drouadaine I (2009) Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site. J Hazard Mater 172:904–913CrossRefGoogle Scholar
  47. 47.
    Reijnders L (2007) Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: a review. Build Environ 42:1036–1042CrossRefGoogle Scholar
  48. 48.
    Aguiar del Toro M, Calmano W, Ecke H (2009) Wet extraction of heavy metals and chloride from MSWI and straw combustion ashes. Waste Manage 29:2494–2499CrossRefGoogle Scholar
  49. 49.
    Sakanakura H (2007) Formation and durability of dithiocarbamic metals in stabilized air pollution control residue from municipal solid waste incineration and melting processes. Environ Sci Technol 41:1717–1722CrossRefGoogle Scholar
  50. 50.
    Bosshard RP, Bachofen R, Brandl H (1996) Metal leaching from fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30:3066–3071CrossRefGoogle Scholar
  51. 51.
    Yang J, Wang QH, Wang Q, Wu TJ (2008) Comparison of one-step and two-step bioleaching for heavy metal removal from municipal solid waste incineration fly ash. Environ Eng Sci 25:783–789CrossRefGoogle Scholar
  52. 52.
    Bayuseno A, Schmahl WW, Müllejans T (2009) Hydrothermal processing of MSWI fly ash – towards new stable minerals and fixation of heavy metals. J Hazard Mater 167:250–259CrossRefGoogle Scholar
  53. 53.
    Fraissler G, Jollet M, Mattenberger H, Brunner T, Obernberger I (2009) Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination. Chem Eng Process 48:152–164CrossRefGoogle Scholar
  54. 54.
    Bo D, Zhang F, Zhao L (2009) Influence of supercritical water treatment on heavy metals in medical waste incineration ash. J Hazard Mater 170:66–71CrossRefGoogle Scholar
  55. 55.
    Guo X, Xiang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manage 30:4–10CrossRefGoogle Scholar
  56. 56.
    Siddique R (2008) Waste materials and by-products in concrete. Springer, LondonGoogle Scholar
  57. 57.
    Yao J, Li W, Kong Q, Wu Y, He R, Shen D (2010) Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejang province, China. Fuel 89:616–622CrossRefGoogle Scholar
  58. 58.
    Huang C, Yang W, Ma H, Song Y (2006) The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Manage 26:979–987CrossRefGoogle Scholar
  59. 59.
    Pan JR, Huang C, Kao J, Lin S (2008) Recycling MSWI bottom and fly ash as raw materials in Portland cement. Waste Manage 28:1113–1118CrossRefGoogle Scholar
  60. 60.
    Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B 96:201–216CrossRefGoogle Scholar
  61. 61.
    Toller S, Kärrman E, Gustafsson JP, Magnusson Y (2009) Environmental assessment of incinerator residue utilization. Waste Manage 29:2071–2077CrossRefGoogle Scholar
  62. 62.
    Francois D, Pierson K (2009) Environmental assessment of a road site built with MSWI residue. Sci Total Environ 407:5945–5960CrossRefGoogle Scholar
  63. 63.
    Huang W, Tang H, Lin K, Liao M (2010) An emerging pollutant contributing to cytotoxicity of MSWI ash wastes: strontium. J Hazard Mater 173:597–604CrossRefGoogle Scholar
  64. 64.
    Dubey B, Townsend T (2007) Leaching of milled asphalt pavement amended with waste-to-energy ash. Int J Environ Waste Manage 1:145–158CrossRefGoogle Scholar
  65. 65.
    Kayhanian M, Vichare A, Green PG, Harvey J (2009) Leachability of dissolved chromium in asphalt and concrete surfacing materials. J Environ Manage 90:3574–3580CrossRefGoogle Scholar
  66. 66.
    Birgisdottir H, Bhander G, Hauschild MZ, Christensen TH (2007) Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling bottom ash in road construction or landfilling in Denmark evaluated by the ROAD–RES model. Waste Manage 27:S75–S84CrossRefGoogle Scholar
  67. 67.
    Tervahattu H, Kupiainen KJ, Räisänen M, Mäkelä T, Hillamao K (2006) Generation of urban road dust from anti-skid and asphalt concrete aggregates. J Hazard Mater 132:39–46CrossRefGoogle Scholar
  68. 68.
    Travat I, Lidelow S, Anderas L, Tham C, Lagerkvist A (2009) Assessing the environmental impact of ashes used as landfill cover construction. Waste Manage 29:1336–1246CrossRefGoogle Scholar
  69. 69.
    Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model-based prediction of long term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manage 29:839–850CrossRefGoogle Scholar
  70. 70.
    Reijnders L (2007) The cement industry as a scavenger in industrial ecology and the management of hazardous substances. J Ind Ecol 11(1):15–25Google Scholar
  71. 71.
    Karstensen KH, Kinh NK, Thang LB, Vet PH, Tuan ND, Toi DT, Hung NH, Quan TM, Hanh LB, Thang DH (2006) Environmentally sound destruction of obsolete pesticides in developing countries using cement kilns. Environ Sci Policy 9:577–586CrossRefGoogle Scholar
  72. 72.
    Sidhu S, Kast N, Edwards P, Dellinger B (2001) Hazardous air pollutants formation from reactions of raw meal organics in cement kilns. Chemosphere 42:499–506CrossRefGoogle Scholar
  73. 73.
    Chen C (2004) The emission inventory of PCDD/PCDF in Taiwan. Chemosphere 54:1413–1420CrossRefGoogle Scholar
  74. 74.
    Dermatas CM (2006) Evaluation of ettringite and hydrolumite formation for heavy metal immobilization. J Hazard Mater 136:20–33CrossRefGoogle Scholar
  75. 75.
    van der Sloot HA, Seignette P, van Zomeren A, Hoede D, Meeuwsen JCL (2003) Effects of alternative materials, life cycle stages, testing and criteria development. www.ecn.nl
  76. 76.
    Winder C, Carmody M (2002) The dermal toxicity of cement. Toxicol Ind Health 18:321–331CrossRefGoogle Scholar
  77. 77.
    Liden C (2001) Legislative and preventive measures related to contact dermatitis. Contact Dermat 44:65–69CrossRefGoogle Scholar
  78. 78.
    Lannoye PA (2003) Report on proposed Directive of the European Parliament and Council regarding the limitation of marketing nonylphenol, nonylphenol ethoxylate and cement. European Parliament, BrusselsGoogle Scholar
  79. 79.
    Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163CrossRefGoogle Scholar
  80. 80.
    Guo Q (1997) Increases of lead and chromium in drinking water from using cement–mortar–lined pipes: initial modeling and assessment. J Hazard Mater 56:181–213CrossRefGoogle Scholar
  81. 81.
    Pedersen AJ, Frandsen FJ, Riber C, Astrup T, Thomsen SN, Lundtorp K, Mortensen LF (2009) A full-scale study on the partitioning of trace elements in municipal solid waste incineration – effects of firing different waste types. Energy Fuels 23:3475–3489CrossRefGoogle Scholar
  82. 82.
    Alba N, Vazquez E, Gasso S, Baldasano JM (2001) Stabilization/solidification of MSW incineration residues from facilities with different air pollution systems. Durability of matrices versus carbonation. Waste Manage 21:313–324CrossRefGoogle Scholar
  83. 83.
    Yvon J, Antenucci D, Lorenzi G, Dutre V, Leclerq D, Nielsen P, Veschkens M (2006) Long term stability in landfills of municipal solid waste incineration fly ashes solidified/ stabilized by hydraulic binders. J Geochem Explor 90:143–155CrossRefGoogle Scholar
  84. 84.
    Meima JA, Comans RNJ (1998) Reducing Sb leaching from municipal solid waste incineration bottom ash by addition of sorbent materials. J Geochem Explor 62:299–304CrossRefGoogle Scholar
  85. 85.
    Valls S, Vazquez E (2001) Accelerated carbonation of sewage sludge–cement–sand mortars and its environmental impact. Cem Concr Res 31:1271–1276CrossRefGoogle Scholar
  86. 86.
    Ecke H (2003) Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. Waste Manage 23:631–640CrossRefGoogle Scholar
  87. 87.
    Garrabrants AC, Sanchez F, Kosson DS (2004) Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation. Waste Manage 24:19–36CrossRefGoogle Scholar
  88. 88.
    Idachaba MA, Nyavor K, Egiebor NO (2003) Microbial stability evaluation of cement based waste forms at different waste to cement ratios. J Hazard Mater B 96:331–340CrossRefGoogle Scholar
  89. 89.
    Brombacher C, Bachofen R, Brandl H (1997) Biohydrological processing of solids. A patent review. Appl Microbiol Biotechnol 48:577–587CrossRefGoogle Scholar
  90. 90.
    Yang J, Wang Q, Luo Q, Wang Q, Wu T (2009) Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. Biochem Eng J 46:294–299CrossRefGoogle Scholar
  91. 91.
    van Zomeren A, Comans RNJ (2009) Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching. Waste Manage 29:2059–2064CrossRefGoogle Scholar
  92. 92.
    Twardowska J, Szcezepanska J (2002) Solid waste: terminological and long term environmental risk management problems exemplified in a power plant fly ash study. Sci Total Environ 285:28–51CrossRefGoogle Scholar
  93. 93.
    Bayard R, Pestre C, Gourdon R (2009) Aerobic microbial activity in fresh and aged bottom ashes from municipal waste incineration. Int Biodeterior Biodegradation 63:739–746CrossRefGoogle Scholar
  94. 94.
    Aberg A, Kumpiene J, Ecke H (2006) Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incinerator (MSWI). Sci Total Environ 355:1–12CrossRefGoogle Scholar
  95. 95.
    van der Sloot HA (2000) Comparison of the characteristic leaching behavior of cements using standard EN–196–1 cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling. Cem Concr Res 30:1079–1096CrossRefGoogle Scholar
  96. 96.
    Serclérat J, Moskowicz P, Pollet B (2000) Retention mechanisms in mortars of trace metals contained in cement clinkers. Waste Manage 20:259–264CrossRefGoogle Scholar
  97. 97.
    Hunsinger H, Seifert H, Jay K (2006) An economic process to inhibit PCDD/PCDF formation in MSWI by SO2. Organohalogen Compd 68:151–156Google Scholar
  98. 98.
    Hunsinger H, Seifert H, Jay K (2007) Reduction of PCDD/F formation in MSWI by a process-integrated SO2 cycle. Environ Eng Sci 24:1145–1159CrossRefGoogle Scholar
  99. 99.
    Hunsinger H, Seifert H, Jay K (2007) Control of PCDD/F formation under conditions of fluctuating combustion performance in MSWI. Organohalogen Compd 69:956–961Google Scholar
  100. 100.
    Ke S, Ianhua Y, Xiaodong L, Shenyong L, Yinglei W, Muxing F (2010) Inhibition of de novo synthesis of PCDD/Fs by SO 2 in a model system. Chemosphere. doi:10.1016/j.chemosphere.2009.12.043Google Scholar
  101. 101.
    Mast P (1999) Einfluss der Abfallzusammensetzung auf Schadstofgehalt und– Menge der Verbrennuingsrückstaände (Impact of waste composition on the concentration and amount of toxics in combustion residues). TAUW, BerlinGoogle Scholar
  102. 102.
    Jeong SM, Osako N, Kim Y (2005) Utilizing a database to interpret leaching characteristics of lead from bottom ashes of municipal waste incinerators. Waste Manage 23:694–701CrossRefGoogle Scholar
  103. 103.
    Lo S, Tsao Y (1997) Economic analysis of waste minimization for electroplating plants. Water Sci Technol 36:383–390Google Scholar
  104. 104.
    Fujimori T, Takaoka M, Takea N (2009) Influence of Cu, Fe, Pb and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash. Environ Sci Technol 43:8053–8059CrossRefGoogle Scholar
  105. 105.
    Franz M (2008) Phosphate fertilizers from sewage sludge ash (SSA). Waste Manage 28:1809–1818CrossRefGoogle Scholar
  106. 106.
    Adam C, Peplinski B, Michaelis M, Kley G, Simon D (2009) Thermochemical treatment of sewage sludge ashes for phosphorous recovery. Waste Manage 29:1122–1128CrossRefGoogle Scholar
  107. 107.
    Wzorek Z, Jodko M, Gorazda K, Rzepecki T (2006) Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge. J Loss Prev Process Ind 19:39–50CrossRefGoogle Scholar
  108. 108.
    Donatello S, Freeman Pask A, Tyrer M, Cheeseman CR (2010) Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cement Concr Compos 32:54–61CrossRefGoogle Scholar
  109. 109.
    Mattenberger H, Fraissler G, Herk P, Hermann L, Obernberger I (2008) Sewage sludge ash to phosphorus fertilizer: variables influencing heavy metal removal during thermochemical treatment. Waste Manage 28:2709–2722CrossRefGoogle Scholar
  110. 110.
    Ottosen LM, Perdersen AJ, Hansen HK, Ribeiro AB (2007) Screening the possibility for removing cadmium and other heavy metals from wastewater sludges and bioashes by an electrodialytic method. Electrochim Acta 52:3420–2426CrossRefGoogle Scholar
  111. 111.
    Christen C (2007) Closing the phosphorus loop. Environ Sci Technol 46:2078CrossRefGoogle Scholar
  112. 112.
    Zhang F, Yamasaki S, Nazyo M (2001) Application of waste ashes to agricultural land – effect of incineration temperature on chemical characteristics. Sci Total Environ 264:205–214CrossRefGoogle Scholar
  113. 113.
    Lienert J, Larsen TA (2010) High acceptance of urine source separation in seven European countries: a review. Environ Sci Technol 44:556–566CrossRefGoogle Scholar
  114. 114.
    Zhang D, Yamaski S, Kimura K (2001) Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environ Int 27:393–398CrossRefGoogle Scholar
  115. 115.
    Rosen CJ, Bierman PM, Olson D (1994) Swiss chard and alfalfa responses in soils amended with municipal waste incinerator ash: growth and elemental composition. J Agric Food Chem 42:1361–1368CrossRefGoogle Scholar
  116. 116.
    Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B 93:201–216CrossRefGoogle Scholar
  117. 117.
    Pasquini MW (2006) The use of town refuse ash in urban agriculture around Jos, Nigeria: health and environmental risks. Sci Total Environ 354:43–59CrossRefGoogle Scholar
  118. 118.
    Passquini MW, Alexander MJ (2004) Chemical properties of urban waste ash produced by open burning on the Jos Plateau: implications for agriculture. Sci Total Environ 319:325–340CrossRefGoogle Scholar
  119. 119.
    Hwa TJ, Joyseelan S (1977) Conditioning of oily sludges with municipal solid wastes incineration fly ash. Water Sci Technol 35:231–238Google Scholar
  120. 120.
    Yue Q, Han S, Yue M, Gao B, Li Q, Yu H, Zhao Y, Qi Y (2009) The performance of biological anaerobic filters packed with sludge–fly ash ceramic particles (SPCP) and commercial ceramic particles (CCP) Turing the restart period. Effect of the C/N ratios and filter media. Bioresour Technol 100:5016–5020CrossRefGoogle Scholar
  121. 121.
    Han S, Yue Q, Yue M, Gao B, Li Q, Yu H, Zhao Y, Qi Y (2009) The characteristics and application of sludge–fly ash ceramic particles (SCP) as novel filter media. J Hazard Mater 171:809–814CrossRefGoogle Scholar
  122. 122.
    Pan S, Lin C, Tseng D (2003) Reusing sewage sludge as absorbent for copper removal from wastewater. Resour Conserv Recycl 39:79–90CrossRefGoogle Scholar
  123. 123.
    Bouzid J, Elouear Z, Ksibi M, Feki M, Montiel A (2008) A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. J Hazard Mater 152:838–845CrossRefGoogle Scholar
  124. 124.
    Okada K, OnoY KY, Nakajima A, MacKenzie KJD (2007) Simultaneous uptake of ammonium and phosphate ions by compounds prepared from paper sludge ash. J Hazard Mater 141:622–629CrossRefGoogle Scholar
  125. 125.
    Wajama T, Haga M, Kuzawa K, Ishimoto H, Tamada O, Ito K, Nishiyama T, Downs RT, Rakovan JF (2006) Zeolite synthesis from paper sludge ash at low temperature (90oC) with addition of diatomite. J Hazard Mater B 132:244–252CrossRefGoogle Scholar
  126. 126.
    Yang GCC, Yang T (1998) Synthesis of zeolites from municipal incinerator fly ash. J Hazard Mater 62:75–89CrossRefGoogle Scholar
  127. 127.
    Shim Y, Kim Y, Kong S, Rhee S, Lee W (2003) The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Manage 23:851–857CrossRefGoogle Scholar
  128. 128.
    Jin J, Chi L, Yan J (2010) Co-disposal of heavy metals containing waste water and medical waste incinerator fly ash by hydrothermal process with addition of sodium carbonate: a case study on Cu(II) removal. Water Air Soil Pollut. doi:10.1007/s 11270-009-0207-5Google Scholar
  129. 129.
    Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci. doi:10.1016/j.pecs.2009.11.003Google Scholar
  130. 130.
    Smith KM, Fowler GD, Pulket S, Graham NJD (2009) Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications. Water Res 43:2569–2594CrossRefGoogle Scholar
  131. 131.
    Baciocchi R, Polettini A, Pomi R, Prigiobbe V, von Zedwitz VN, Steinfeld A (2006) Sequestration by direct gas–solid carbonation of air pollution control (APC) residues. Energy Fuels 20:1933–1940CrossRefGoogle Scholar
  132. 132.
    Pertl A, Mostbauer P, Obersteiner G (2010) Climate balance of biogas upgrading systems. Waste Manage 30:92–99CrossRefGoogle Scholar
  133. 133.
    Ducom G, Radu-Tirnoveanu D, Pascual C, Benadda B, Germain P (166) Biogas-municipal solid waste incinerator bottom ash interactions: sulphur compounds removal. J Hazard Mater 166:1102–1108CrossRefGoogle Scholar
  134. 134.
    Wang S, Wu H (2006) Environmental–benign utilization of fly ash as low-cost adsorbents. J Hazard Mater B 136:482–501CrossRefGoogle Scholar
  135. 135.
    Karatza D, Lancia A, Musmarra D (1998) Fly ash capture of mercuric chloride vapors from exhaust combustion ash. Environ Sci Technol 32:3999–4004CrossRefGoogle Scholar
  136. 136.
    Reijnders L, Huijbregts MAJ (2009) Biofuels for road transport. Springer, LondonGoogle Scholar
  137. 137.
    Capello C, Hellweg S, Hungerbühler K (2008) Environmental assessment of waste–solvent treatment options. J Ind Ecol 12:111–127CrossRefGoogle Scholar
  138. 138.
    Björklund A, Finnveden G (2005) Recycling revisited – life cycle comparisons of global warming impact and total energy use of waste management strategies. Resour Conserv Recycl 44:309–317CrossRefGoogle Scholar
  139. 139.
    Luteijn J (2009) No energy to waste. Thesis, Open University of the Netherlands, HeerlenGoogle Scholar
  140. 140.
    Vehlow J, Bergfeldt B, Hunsinger H (2006) PCDD/F and related compounds in solid residues from municipal solid waste incineration – a literature review. Waste Manage Res 24:404–420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands