Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Hazardous Waste Incinerator Emissions

  • Montse Mari
  • José L. Domingo
  • Martí Nadal
  • Marta Schuhmacher
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_94

Definition of the Subject

This chapter is basically focused on the assessment of emissions from hazardous waste incinerators (HWIs), evaluating specially those pollutants with the greatest interest and concern due their notable toxicity, persistence, and bioaccumulation capacity: polychlorinated dibenzo-p-dioxin s and dibenzofurans (PCDD/Fs) and heavy metals. The main properties and toxic effects of those chemicals are here summarized. A review of publications on emissions from HWIs indicates that in the last decade significant progresses have been achieved in emission reductions of these facilities as result of very rigorous regulations. The suitability of using environmental (e.g., soils, herbage, etc.) and human biological (e.g., blood, urine, etc.) monitors to evaluate the impact of the above pollutants is presented together with some results of a case study, a wide survey of a HWI located in Catalonia (Spain). The results indicate that when HWIs are properly designed using...

This is a preview of subscription content, log in to check access

Bibliography

  1. 1.
    UNEP (2009) Developing integrated solid waste management plan, vol 2: assessment of current waste management system and gaps therein. United Nations Environmental Programme Division of Technology, Industry and Economics International Environmental Technology Centre, Osaka/ShigaGoogle Scholar
  2. 2.
    Rivera-Austrui J, Borrajo M, Martinez K, Adrados M, Abalos M, Van Bavel B, Rivera J, Abad E (2011) Assessment of polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from a hazardous waste incineration plant using long-term sampling equipment. Chemosphere 82:1343–1349CrossRefGoogle Scholar
  3. 3.
    Olie K, Vermeulen PL, Hutzinger O (1977) Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands. Chemosphere 8:455–459CrossRefGoogle Scholar
  4. 4.
    UNILABS Environmental (2001) Characterisation and estimation of dioxin and furan emissions from waste incineration facilities. www.environment.gov.au/settlements/publications/chemicals/dioxins/dioxinemissions.html
  5. 5.
    Gullett BK, Touati A, Lee C (2000) Formation of chlorinated dioxins and furans in a hazardous-waste-firing industrial boiler. Environ Sci Technol 34:2069–2074CrossRefGoogle Scholar
  6. 6.
    Choi K-I, Lee S-H, Lee D-H (2008) Emissions of PCDDs/DFs and dioxin-like PCBs from small waste incinerators in Korea. Atmos Environ 42:940–948CrossRefGoogle Scholar
  7. 7.
    Rimmer DL, Vizard CG, Pless-Mulloli T, Singleton I, Air VS, Keatinge ZA (2006) Metal contamination of urban soils in the vicinity of a municipal waste incinerator: one source among many. Sci Total Environ 356:207–216CrossRefGoogle Scholar
  8. 8.
    Jung CH, Matsuto T, Tanaka N, Okada, T (2004) Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Manage 24:381–391CrossRefGoogle Scholar
  9. 9.
    Donnelly JR (1992) Metal emissions control technologies for waste incineration. In: Series AS (ed) Clean energy from waste and coal. American Chemical Society, Washington, DC, pp 174–188CrossRefGoogle Scholar
  10. 10.
    Kim JH, Seo YC, Pudasainee D, Lee SH, Cho SJ, Jang HN, Park JM, Song GJ, Park KS (2009) Efforts to develop regulations in Korea similar to the US maximum achievable control technology (MACT) regulations for hazardous waste incinerators. J Mat Cycl Waste Manage 11(3):183–190CrossRefGoogle Scholar
  11. 11.
    Kutz FW, Barnes DG, Bottimore DP, Greim H, Bretthauer EW (1990) The international toxicity equivalency factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Chemosphere 20:751–757CrossRefGoogle Scholar
  12. 12.
    Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE (2006) The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93(2):223–241CrossRefGoogle Scholar
  13. 13.
    NATO (1988) International toxicity equivalence factors (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Pilot study on international information exchange on dioxins and related compounds, Report number 176, Aug 1988. North Atlantic Treaty Organisation, Committee on Challenges of Modern SocietyGoogle Scholar
  14. 14.
    Kimbrough RD (1995) Polychlorinated biphenyls (PCBs) and human health: an update. Crit Rev Toxicol 25:133–163CrossRefGoogle Scholar
  15. 15.
    ATSDR (2000) Polychlorinated biphenyls. Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  16. 16.
    Aoki Y (2001) Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans as endocrine disrupters – what we have learned from Yusho disease. Environ Res 86:2–11CrossRefGoogle Scholar
  17. 17.
    IARC (1995) Monograph volumes 1972–1994. WHO, Geneva, pp 1–60. www.holgr/medical/nuclear/carcinogen.htm
  18. 18.
    Negri E, Bosetti C, Fattore E, La Vecchia C (2003) Environmental exposure to polychlorinated biphenyls (PCBs) and breast cancer: a systematic review of the epidemiological evidence. Eur J Cancer Prev 12:509–516CrossRefGoogle Scholar
  19. 19.
    Helm PA, Bidleman TF (2003) Current combustion-related sources contribute to polychlorinated naphthalene and dioxin-like polychlorinated biphenyl levels and profiles in air in Toronto, Canada. Environ Sci Technol 37:1075–1082CrossRefGoogle Scholar
  20. 20.
    Meijer SN, Harner T, Helm PA, Halsall CJ, Johnston AE, Jones KC (2001) Polychlorinated naphthalenes in U.K. soils: time trends, markers of source, and equilibrium status. Environ Sci Technol 35:4205–4213CrossRefGoogle Scholar
  21. 21.
    Lin Y, Gupta G, Baker J (1995) Photodegradation of polychlorinated biphenyl congeners using simulated sunlight and diethylamine. Chemosphere 31:3323–3344CrossRefGoogle Scholar
  22. 22.
    Gouin T, Cousins I, Mackay D (2004) Comparison of two methods for obtaining degradation half-lives. Chemosphere 56:531–535CrossRefGoogle Scholar
  23. 23.
    Sinkkonen S, Paasivirta J (2000) Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere 40:943–949CrossRefGoogle Scholar
  24. 24.
    Shirai JH, Kissel JC (1996) Uncertainty in estimated half-lives of PCBs in humans: impact on exposure assessment. Sci Total Environ 187:199–210CrossRefGoogle Scholar
  25. 25.
    Brown JF (1994) Determination of PCB metabolic, excretion, and accumulation rates for use as indicators of biological response and relative risk. Environ Sci Technol 28:2295–2305CrossRefGoogle Scholar
  26. 26.
    Nizzetto L, Cassani C, Di Guardo A (2006) Deposition of PCBs in mountains: the forest filter effect of different forest ecosystem types. Ecotoxicol Environ Safe 63:75–83CrossRefGoogle Scholar
  27. 27.
    Falandysz J (1998) Polychlorinated naphthalenes: an environmental update. Environ Pollut 101:77–90CrossRefGoogle Scholar
  28. 28.
    Blankenship AL, Kannan K, Villalobos SA, Villeneuve DL, Falandysz J, Imagawa T, Jakobsson E, Giesy JP (2000) Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce Ah receptor-mediated responses. Environ Sci Technol 34:3153–3158CrossRefGoogle Scholar
  29. 29.
    Hayward D (1998) Identification of bioaccumulating polychlorinated naphthalenes and their toxicological significance. Environ Res 76:1–18CrossRefGoogle Scholar
  30. 30.
    Van den Berg M, Peterson RE, Schrenk D (2000) Human risk assessment and TEFs. Food Addit Contam 17:347–358CrossRefGoogle Scholar
  31. 31.
    Kannan K, Hilscherova K, Imagawa T, Yamashita N, Williams LL, Giesy JP (2001) Polychlorinated naphthalenes, -biphenyls, -dibenzo-p-dioxins, and -dibenzofurans in double-crested cormorants and herring gulls from Michigan waters of the Great Lakes. Environ Sci Technol 35:441–447CrossRefGoogle Scholar
  32. 32.
    Eljarrat E, Barcelo D (2003) Priority lists for persistent organic pollutants and emergingcontaminants based on their relative toxic potency in environmental samples. Trend Anal Chem 22:655–665CrossRefGoogle Scholar
  33. 33.
    Jarnberg U, Asplund L, De Wit C, Grafstrom AK, Haglund P, Jansson B, Lexen K, Strandell M, Olsson M, Jonsson B (1993) Polychlorinated biphenyls and polychlorinated naphthalenes in Swedish sediment and biota: levels, patterns, and time trends. Environ Sci Technol 27:1364–1374CrossRefGoogle Scholar
  34. 34.
    Schneider M, Stieglitz L, Will R, Zwick G (1998) Formation of polychlorinated naphthalenes on fly ash. Chemosphere 37:2055–2070CrossRefGoogle Scholar
  35. 35.
    Abad E, Caixach J, Rivera J (1999) Dioxin like compounds from municipal waste incinerator emissions: assessment of the presence of polychlorinated naphthalenes. Chemosphere 38:109–120CrossRefGoogle Scholar
  36. 36.
    Kannan K, Imagawa T, Blankenship AL, Giesy JP (1998) Isomer-specific analysis and toxic evaluation of polychlorinated naphthalenes in soil, sediment, and biota collected near the site of a former chlor-alkali plant. Environ Sci Technol 32:2507–2514CrossRefGoogle Scholar
  37. 37.
    Yamashita N, Kannan K, Imagawa T, Miyazaki A, Giesy JP (2000) Concentrations and profiles of polychlorinated naphthalene congeners in eighteen technical polychlorinated biphenyl preparations. Environ Sci Technol 34:4242–4254CrossRefGoogle Scholar
  38. 38.
    Meijer SN, Ockenden WA, Steinnes E, Corrigan BP, Jones KC (2003) Spatial and temporal trends of POPs in Norwegian and UK background air: Implications for global cycling. Environ Sci Technol 37:454–461CrossRefGoogle Scholar
  39. 39.
    Harner T, Bidleman TF (1998) Measurement of octanol-air partition coefficients for polycyclic aromatic hydrocarbons and polychlorinated naphthalenes. J Chem Eng Data 43:40–46CrossRefGoogle Scholar
  40. 40.
    Domingo JL (2004) Polychlorinated naphthalenes in animal aquatic species and human exposure through the diet: a review. J Chromat A 1054:327–334CrossRefGoogle Scholar
  41. 41.
    Opperhuizen A, van der Velde EW, Gobas FAPC, Liem DAK, van der Steen JMD (1985) Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14:1871–1896CrossRefGoogle Scholar
  42. 42.
    Hanari N, Horii Y, Taniyasu S, Falandysz J, Bochentin I, Orlikowska A, Puzyn T, Yamashita N (2004) Isomer specific analysis of polychlorinated naphthalenes in pine trees (Pinus thunbergi Parl.) and (Pinus densiflora Sieb. et Zucc) needles around Tokyo Bay, Japan. Pol J Environ Stud 13:139–151Google Scholar
  43. 43.
    Crookes MJ, Howe PP (1993) Environmental hazard assessment: halogenated naphthalenes. Department of the Environment, Directorate for Air, Climate and Toxic Substances, Toxic Substances Division, GarstonGoogle Scholar
  44. 44.
    Van de Plassche E, Schwegler A, Iestra W (2002) Polychlorinated naphthalenes and the UN-ECE POP protocol. Organohal Compd 58:89–91Google Scholar
  45. 45.
    Breivik K, Alcock R, Li Y-F, Bailey RE, Fierens S, Pacyna JM (2004) Primary sources of selected POPs: regional and global scale emission inventories. Environ Pollut 128:3–16CrossRefGoogle Scholar
  46. 46.
    Lönnermark A, Blomqvist P, Marklund S (2008) Emissions from simulated deep-seated fires in domestic waste. Chemosphere 70:626–639CrossRefGoogle Scholar
  47. 47.
    ATSDR (2002) Toxicological profile for hexachlorobenzene. U.S. Public Health Services, U.S. Department of Health and Human Services, AtlantaGoogle Scholar
  48. 48.
    Messerer P, Zober A, Becher H (1998) Blood lipid concentrations of dioxins and furans in a sample of BASF employees included in the IARC registry of workers exposed to phenoxy acid herbicides and/or chlorophenols. Environ Health Perspect 106:733–735Google Scholar
  49. 49.
    ATSDR (2000) Toxicological profile for arsenic. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  50. 50.
    Basu A, Mahata J, Gupta S, Giri AK (2001) Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res 488:171–194CrossRefGoogle Scholar
  51. 51.
    Pongratz R (1998) Arsenic speciation in environmental samples of contaminated soil. Sci Total Environ 224:133–141CrossRefGoogle Scholar
  52. 52.
    Nadal M, Perelló G, Schuhmacher M, Cid J, Domingo JL (2008) Concentrations of PCDD/PCDFs in plasma of subjects living in the vicinity of a hazardous waste incinerator: follow-up and modeling validation. Chemosphere 73:901–906CrossRefGoogle Scholar
  53. 53.
    Fattorini D, Alonso-Hernandez CM, Diaz-Asencio M, Munoz-Caravaca A, Pannacciulli FG, Tangherlini M, Regoli F (2004) Chemical speciation of arsenic in different marine organisms: Importance in monitoring studies. Marine Environ Res 58:845–850CrossRefGoogle Scholar
  54. 54.
    IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs. In: IARC Monographs on the evaluation of carcinogenic risks to humans, vol 1–42(suppl 7). International Agency for Research on Cancer, LyonGoogle Scholar
  55. 55.
    Rossman TG, Uddin AN, Burns FJ (2004) Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicol Appl Pharmacol 198:394–404CrossRefGoogle Scholar
  56. 56.
    Huff J, Chan P, Nyska A (2000) Is the human carcinogen arsenic carcinogenic to laboratory animals? Toxicol Sci 55:17–23CrossRefGoogle Scholar
  57. 57.
    ATSDR (2002) Toxicological profile for beryllium. Department of Health and Human Services, AtlantaGoogle Scholar
  58. 58.
    US EPA (2010) Preliminary remediation goals. www.epa.gov/region9/superfund/prg/. Accessed 13 Apr 2011
  59. 59.
    Baldwin DR, Marshall WJ (1999) Heavy metal poisoning and its laboratory investigation. Ann Clin Biochem 36:267–300Google Scholar
  60. 60.
    Robards K, Worsford P (1991) Cadmium: toxicology and analysis. A review. Analyst 116:549–568CrossRefGoogle Scholar
  61. 61.
    McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA (2006) Cadmium exposure and breast cancer risk. J Nat Cancer Inst 98:869–873CrossRefGoogle Scholar
  62. 62.
    Kasuya MR (2000) Recent epidemiological studies on itai-itai disease as a chronic cadmium poisoning in Japan. Water Sci Technol 42:147–154Google Scholar
  63. 63.
    Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to Low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112:1099–1103CrossRefGoogle Scholar
  64. 64.
    Linna A, Oksa P, Palmroos P, Roto P, Laippala P, Uitti J (2003) Respiratory health of cobalt production workers. Am J Ind Med 44:124–132CrossRefGoogle Scholar
  65. 65.
    ATSDR (2004) Toxicological profile for cobalt. Department of Health and Human Services, AtlantaGoogle Scholar
  66. 66.
    ATSDR (2004) Toxicological profile for copper. Department of Health and Human Services, AtlantaGoogle Scholar
  67. 67.
    Singh J, Carlisle DL, Pritchard DE, Patierno SR (1998) Chromium-induced genotoxicity and apoptosis: relationship to chromium carcinogenesis (review). Oncol Rep 5:1307–1318Google Scholar
  68. 68.
    Vaglenov A, Nosko M, Georgieva R, Carbonell E, Creus A, Marcos R (1999) Genotoxicity and radioresistance in electroplating workers exposed to chromium. Mutat Res 446(1):23–34CrossRefGoogle Scholar
  69. 69.
    ATSDR (2000) Toxicological profile for chromium. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  70. 70.
    IARC (1990) Chromium and chromium compounds. In: IARC Monographs on the evaluation of carcinogenic risks to humans, vol 49. International Agency for the Research on Cancer, LyonGoogle Scholar
  71. 71.
    ATSDR (2005) Toxicological profile for tin. Department of Health and Human Services, AtlantaGoogle Scholar
  72. 72.
    ATSDR (2000) Toxicological profile for manganese. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  73. 73.
    Josephs KA, Ahlskog JE, Klos KJ, Kumar N, Fealey RD, Trenerry MR, Cowl CT (2005) Neurologic manifestations in welders with pallidal MRI T1 hyperintensity. Neurology 64:2033–2039CrossRefGoogle Scholar
  74. 74.
    ATSDR (1999) Toxicological profile for mercury. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  75. 75.
    Chang MB, Wu HT, Huang CK (2000) Evaluation on speciation and removal efficiencies of mercury from municipal solid waste incinerators in Taiwan. Sci Total Environ 246:165–173CrossRefGoogle Scholar
  76. 76.
    Karimi A, Moniri F, Nasihatkon A, Zarepoor MJ, Alborzi A (2002) Mercury exposure among residents of a building block in Shirz, Iran. Environ Res A 88:41–43CrossRefGoogle Scholar
  77. 77.
    Ekino S, Susa M, Ninomiya T, Imamura K, Kitamura T (2007) Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J Neurol Sci 262:131–144CrossRefGoogle Scholar
  78. 78.
    Horng CJ, Tsai JL, Lin SR (1999) Determination of urinary arsenic, mercury, and selenium in steel production workers. Biol Trace Elem Res 70:29–40CrossRefGoogle Scholar
  79. 79.
    ATSDR (2005) Toxicological profile for nickel. U.S. Public Health Services, U.S. Department of Health and Human Services, AtlantaGoogle Scholar
  80. 80.
    Finkelstein Y, Markowitz ME, Rosen JF (1998) Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res Rev 27:168–176CrossRefGoogle Scholar
  81. 81.
    Torrente M, Colomina MT, Domingo JL (2005) Metal concentrations in hair and cognitive assessment in an adolescent population. Biol Trace Elem Res 104:215–221CrossRefGoogle Scholar
  82. 82.
    Navas-Acien A, Schwartz BS, Rothenberg SJ, Hu H, Silbergeld EK, Guallar E (2008) Bone lead levels and blood pressure endpoints: a meta-analysis. Epidemiology 19:496–504CrossRefGoogle Scholar
  83. 83.
    dos Santos ACD, Colacciopo S, Dal Bó CMR, dos Santos NAG (1994) Occupational exposure to lead, kidney function tests, and blood pressure. Am J Ind Med 26:635–645CrossRefGoogle Scholar
  84. 84.
    Saha A (2005) Thallium toxicity: a growing concern. Indian J Occup Environ Med 9:53–56CrossRefGoogle Scholar
  85. 85.
    ATSDR (1992) Toxicological profile for thallium. Department of Health and Human Services, AtlantaGoogle Scholar
  86. 86.
    ATSDR (1992) Toxicological profile for vanadium. Department of Health and Human Services, AtlantaGoogle Scholar
  87. 87.
    Hinshaw GD, Trenholm AR (2001) Hazardous waste incineration in perspective. Waste Manage 21:471–475CrossRefGoogle Scholar
  88. 88.
    van Velzen D, Langenkamp H, Herb G (2002) Review: mercury in waste incineration. Waste Manage Res 20:556–568CrossRefGoogle Scholar
  89. 89.
    Löthgren C-J, van Bavel B (2005) Dioxin emissions after installation of a polishing wet scrubber in a hazardous waste incineration facility. Chemosphere 61(3):405–412CrossRefGoogle Scholar
  90. 90.
    Van Caneghem J, Block C, Van Brecht A, Wauters G, Vandecasteele C (2010) Mass balance for POPs in hazardous and municipal solid waste incinerators. Chemosphere 78:701–708CrossRefGoogle Scholar
  91. 91.
    Kim B-H, Lee S-J, Mun S-J, Chang Y-S (2005) A case study of dioxin monitoring in and around an industrial waste incinerator in Korea. Chemosphere 58:1589–1599CrossRefGoogle Scholar
  92. 92.
    Morselli L, Passarini F, Bartoli M (2002) The environmental fate of heavy metals arising from a MSW incineration plant. Waste Manage Res 22:875–881CrossRefGoogle Scholar
  93. 93.
    Ahammed AKMR, Nixon BM (2006) Environmental impact monitoring in the EIA process of South Australia. Environ Impact Assess Rev 26(5):426–447CrossRefGoogle Scholar
  94. 94.
    Klumpp A, Klumpp G, Domingos M (1994) Plants as bioindicators of air pollution at the Serra do Mar near the industrial complex of Cubatao, Brazil. Environ Pollut 85:109–116CrossRefGoogle Scholar
  95. 95.
    Moraes RM, Klumpp A, Furlan CM, Klumpp G, Domingos M, Rinaldi MC, Modesto IF (2002) Tropical fruit trees as bioindicators of industrial pollution in southeast Brazil. Environ Int 28:367–374CrossRefGoogle Scholar
  96. 96.
    Ho YB, Tai KM (1988) Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong Kong. Environ Pollut 49:37–51CrossRefGoogle Scholar
  97. 97.
    Meneses M, Llobet JM, Granero S, Schuhmacher M, Domingo JL (1999) Monitoring metals in the vicinity of a municipal waste incinerator: temporal variation in soils and vegetation. Sci Total Environ 226(2–3):157–164CrossRefGoogle Scholar
  98. 98.
    Nadal M, Schuhmacher M, Domingo JL (2004) Metal pollution of soils and vegetation in an area with petrochemical industry. Sci Total Environ 321:59–69CrossRefGoogle Scholar
  99. 99.
    Ewers U, Krause C, Schulz C, Wilhelm M (1999) Reference values and human biological monitoring values for environmental toxins. Report on the work and recommendations of the commission on human biological monitoring of the German Federal Environmental Agency. Int Arch Occup Environ Health 72:255–260CrossRefGoogle Scholar
  100. 100.
    Paustenbach D, Galbraith D (2006) Biomonitoring: is body burden relevant to public health? Regul Toxicol Pharmacol 44:249–261CrossRefGoogle Scholar
  101. 101.
    Calafat AM, Ye X, Silva MJ, Kuklenyik Z, Needham LL (2006) Human exposure assessment to environmental chemicals using biomonitoring. Int J Androl 29:166–171CrossRefGoogle Scholar
  102. 102.
    Angerer J, Ewers U, Wilhelm M (2007) Human biomonitoring: state of the art. Int J Hyg Environ Health 210:201–228CrossRefGoogle Scholar
  103. 103.
    Schuhmacher M, Kiviranta H, Ruokojärvi P, Nadal M, Domingo JL (2009) Concentrations of PCDD/Fs, PCBs and PBDEs in breast milk of women from Catalonia, Spain: a follow-up study. Environ Int 35:607–613CrossRefGoogle Scholar
  104. 104.
    Schuhmacher M, Agramunt MC, Rodriguez-Larena MC, Díaz-Ferrero J, Domingo JL (2002) Baseline levels of PCDD/Fs in soil and herbage samples collected in the vicinity of a new hazardous waste incinerator in Catalonia, Spain. Chemosphere 46:1343–1350CrossRefGoogle Scholar
  105. 105.
    Schuhmacher M, Rodriguez-Larena MC, Agramunt MC, Diaz-Ferrero J, Domingo JL (2002) Environmental impact of a new hazardous waste incinerator in Catalonia, Spain: PCDD/PCDF levels in herbage samples. Chemosphere 48:187–193CrossRefGoogle Scholar
  106. 106.
    Mari M, Nadal M, Ferré-Huguet N, Schuhmacher M, Borrajo M, Domingo JL (2007) Monitoring PCDD/Fs in soil and herbage samples collected near a hazardous waste incinerator. Health risks for the population living nearby. Human Ecol Risk Assess 13:1255–1270CrossRefGoogle Scholar
  107. 107.
    Nadal M, Bocio A, Schuhmacher M, Domingo JL (2005) Trends in the levels of metals in soils and vegetation samples collected near a hazardous waste incinerator. Arch Environ Contam Toxicol 49:290–298CrossRefGoogle Scholar
  108. 108.
    Nadal M, Domingo JL, García F, Schuhmacher M (2009) Levels of PCDD/F in adipose tissue on non-occupationally exposed subjects living near a hazardous waste incinerator in Catalonia, Spain. Chemosphere 74:1471–1476CrossRefGoogle Scholar
  109. 109.
    Nadal M, Espinosa G, Schuhmacher M, Domingo JL (2004) Patterns of PCDDs and PCDFs in human milk and food and their characterization by artificial neural networks. Chemosphere 54:1375–1382CrossRefGoogle Scholar
  110. 110.
    Schuhmacher M, Domingo JL, Hagberg J, Lindström G (2004) PCDD/F and non-ortho PCB concentrations in adipose tissue of individuals living in the vicinity of a hazardous waste incinerator. Chemosphere 57:357–364CrossRefGoogle Scholar
  111. 111.
    Schuhmacher M, Domingo JL, Llobet JM, Kiviranta H, Vartiainen T (1999) PCDD/F concentrations in milk of nonoccupationally exposed women living in southern Catalonia, Spain. Chemosphere 38:995–1004CrossRefGoogle Scholar
  112. 112.
    Schuhmacher M, Domingo JL, Llobet JM, Lindström G, Wingfors H (1999) Dioxin and dibenzofuran concentrations in adipose tissue of a general population from Tarragona, Spain. Chemosphere 38:2475–2487CrossRefGoogle Scholar
  113. 113.
    Schuhmacher M, Domingo JL, Llobet JM, Lindström G, Wingfors H (1999) Dioxin and dibenzofuran concentrations in blood of a general population from Tarragona, Spain. Chemosphere 38:1123–1133CrossRefGoogle Scholar
  114. 114.
    Mari M, Borrajo MA, Schuhmacher M, Domingo JL (2007) Monitoring PCDD/Fs and other organic substances in workers of a hazardous waste incinerator: a case study. Chemosphere 67:574–581CrossRefGoogle Scholar
  115. 115.
    Carmen Agramunt M, Domingo A, Domingo JL, Corbella J (2003) Monitoring internal exposure to metals and organic substances in workers at a hazardous waste incinerator after 3 years of operation. Toxicol Lett 146:83–91CrossRefGoogle Scholar
  116. 116.
    Vilavert L, Nadal M, Mari M, Schuhmacher M, Domingo JL (2010) Monitoring temporal trends in environmental levels of polychlorinated dibenzo-p-dioxins and dibenzofurans: results from a 10-year surveillance program of a hazardous waste incinerator. Arch Environ Contam Toxicol 59:521–531CrossRefGoogle Scholar
  117. 117.
    Martí-Cid R, Bocio A, Domingo JL (2008) Dietary exposure to PCDD/PCDFs by individuals living near a hazardous waste incinerator in Catalonia, Spain: temporal trend. Chemosphere 70:1588–1595CrossRefGoogle Scholar
  118. 118.
    Bocio A, Domingo JL (2005) Daily intake of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDFs) in foodstuffs consumed in Tarragona, Spain: a review of recent studies (2001–2003) on human PCDD/PCDF exposure through the diet. Environ Res 97:1–9CrossRefGoogle Scholar
  119. 119.
    Hassanin A, Lee RGM, Johnston AE, Jones KC (2006) Reductions and changing patterns of ambient PCDD/Fs in the UK: evidence and implications. Chemosphere 65:530–539CrossRefGoogle Scholar
  120. 120.
    Mari M, Schuhmacher M, Domingo JL (2009) Levels of metals and organic substances in workers at a hazardous waste incinerator: a follow-up study. Int Arch Occup Environ Health 82:519–528CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Montse Mari
    • 1
  • José L. Domingo
    • 1
  • Martí Nadal
    • 1
  • Marta Schuhmacher
    • 1
  1. 1.Laboratory of Toxicology and Environmental Health, School of Medicine, IISPVUniversitat Rovira i VirgiliReusSpain