Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Aircraft and Space Atmospheric Measurements Using Differential Absorption Lidar (DIAL)

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_878

Definition of the Subject and Its Importance

The study of the atmosphere has expanded greatly in the past decade due to concern about global climate change and air quality health effects. The natural atmospheric chemistry is complex but with anthropogenic emissions released into the atmosphere, the resulting complexity makes modeling very difficult. Chemical reactions generally increase with temperature and thus a warming climate may change the weather and climate in unpredictable ways. Also with increased regulations regarding air quality emissions, more attention is being directed toward atmospheric species measurements to assess the impact of specific emission regulations. As a result of these concerns, lidar has become a very valuable tool to directly measure the number density of specific atmospheric species as a function of altitude. This article will review the use of differential absorption lidar (DIAL) in current aircraft based missions and the potential for use of...

This is a preview of subscription content, log in to check access

Bibliography

  1. 1.
    Browell EV, Carter AF, Shipley ST, Allen RJ, Butler CF, Mayo MN, Siviter JH, Hall WM (1983) NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles. Appl Optics 22:522–534CrossRefGoogle Scholar
  2. 2.
    Browell EV, Browell EV (1983) In: Killinger DK, Moorradian A, Killinger DK, Moorradian A (eds) Optical laser remote sensing. Springer, New York, pp 138–148Google Scholar
  3. 3.
    Bucholtz A (1995) Rayleigh scattering calculations for the terrestrial atmosphere. Appl Optics 34:2765–2773CrossRefGoogle Scholar
  4. 4.
    Williamson CK, De Young RJ (2000) Method for the reduction of signal-induced noise in photomultiplier tubes. Appl Optics 39:1973–1979CrossRefGoogle Scholar
  5. 5.
    Weitkamp C (2005) Lidar range resolved optical remote sensing of the atmosphere. Springer, New YorkGoogle Scholar
  6. 6.
    Kovalev VA, Eichinger WE (2004) Elastic lidar. Wiley, New JerseyCrossRefGoogle Scholar
  7. 7.
    Browell EV (1989) Differential absorption lidar sensing of ozone. Proc IEEE 77:419–432CrossRefGoogle Scholar
  8. 8.
    Kuang S, Burris JF, Newchurch MJ, Johnson S, Long S (2010) Differential absorption lidar to measure subhourley variation of tropospheric ozone profiles. IEEE Trans Geo Remote Sensing 49:557–571CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Flesia C, Mugnai A, Emery Y, Godin L, de Schoulepnikoff L, Mitev V (1994) Interpretation of lidar depolarization measurements of the Pinatubo stratospheric aerosol layer during EASOE. Geo Res Letts 21:1443–1446CrossRefGoogle Scholar
  11. 11.
    Schoulepnikoff L, Van Den Bergh H, Calpini B (1998) Tropospheric air pollution monitoring LIDAR. In: Myers RA (ed) Encyclopedia of environmental analysis and remediation. Wiley, New York, pp 4873–4909Google Scholar
  12. 12.
    Ismail S, Browell EV (1994) Recent lidar technology developments and their influence on measurements of tropospheric water vapor. J Atmos Oceanic Tech 11:76–84CrossRefGoogle Scholar
  13. 13.
    Ismail S (2011) GRIP Campaign data, private communicationGoogle Scholar
  14. 14.
    Kooi S (2011) private communicationGoogle Scholar
  15. 15.
    Winker DM, Couch RH, McCormick MP (1996) An overview of LITE: NASA lidar in-space technology experiment. Proc IEEE 84:164–179CrossRefGoogle Scholar
  16. 16.
    Farrell SL, Laxon SW, McAdoo DC, Yi D, Zwally HJ (2009) Five years of arctic sea ice freeboard measurements from the ice, cloud and land elevation satellite. J Geophys Res 114:C04008. doi:10.1029/2008JC005074CrossRefGoogle Scholar
  17. 17.
    Abdalati W, Zwally HJ, Bindschadler R, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98:735–751CrossRefGoogle Scholar
  18. 18.
    Winker DM, Pelon J, Coakley JA, Ackerman SA, Charlson RJ, Colarco PR, Flamant P, Fu Q, Hoff RH, Kittaka C, Kubar TL, Le Treut H, McCormick MP, Megie G, Poole L, Powell K, Trepte C, Vaughan MA, Wielicki BA (2010) The CALIPSO mission a 3D view of aerosols and clouds. Bull Am Met Soc. doi:10.1175/2010BAMS3009.1Google Scholar
  19. 19.
    Vaughan MA (2011) NASA Langley Research Center, private communicationGoogle Scholar
  20. 20.
    Clissold P (ed) (2008) ADM-Aeolus, SP-1311, ESA Communication Production Office, The Netherlands, ISBN 978-92-9221-404-3Google Scholar
  21. 21.
    Le Hors L, Toulemont Y, Heliere A (2008) Design and development of the backscatter lidar ATLID for EARTHCARE. In: International Conference on Space Optics, Toulouse, 14–17 Oct 2008Google Scholar
  22. 22.
    Barnes NP, Walsh BM, Reichle D, De Young RJ (2009) Tm:fiber lasers for remote sensing. Opt Mat. doi:10.1016/j.optmat.2007.11.037, 31:1061-1064Google Scholar
  23. 23.
    De Young RJ, Barnes NP (2010) Profiling atmospheric water vapor using a fiber laser lidar system. Appl Optics 49:562–567CrossRefGoogle Scholar
  24. 24.
    Browell EV (1995) Airborne lidar measurements. Rev Laser Eng 23:135–141CrossRefGoogle Scholar
  25. 25.
    Ball DJ, Dudelzak AE, Rheault F, Browell EV, Ismail S, Stadler JH, Hoff RM, McElroy CT, Allan I, Carswell CTA, Hahn JF, Ulitsky A (1998) ORACLE (ozone research with advanced cooperative lidar experiment): joint NASA-CSA development of a space-base ozone DIAL. Proc SPIE 3494:223–226. doi:10.1117/12.332422CrossRefGoogle Scholar
  26. 26.
    Ismail S, Browell EV (1989) Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis. Appl Optics 28:3603–3615CrossRefGoogle Scholar
  27. 27.
    Wulfmeyer V, Bauer H, Girolammo D, Serio C (2005) Comparison of active and passive water vapor remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar. Remote Sens Environ 95:211–230CrossRefGoogle Scholar
  28. 28.
    Ismail S, Peterson LD, Hinkle JD (2005) Applications of deployable telescopes for earth-observing lidar. In: Proceedings of the ESTO earth science technology conference, College Park, 27–28 June 2005Google Scholar
  29. 29.
    Chin M, Kahn RA, Schwartz SE (eds) (2009) CCSP 2009: atmospheric aerosol properties and climate impacts, Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, National Aeronautics and Space Administration, Washington, DC, 128 ppGoogle Scholar
  30. 30.
    Monks PS, Granier C, Fuzzi S, Stohl A, Williams ML, Akimoto H, Amanni M et al (2009) Atmospheric composition change – global and regional air quality. Atmos Environ 43:5268–5350CrossRefGoogle Scholar
  31. 31.
    Browell EV, Ismail S, Grant WB (1989) Differential absorption lidar (DIAL) measurements from air and space. Appl Phys B 67:399–410CrossRefGoogle Scholar
  32. 32.
    Real E, Law KS, Weinzierl B, Fiebig M, Petzold A, Wild O, Methven J, Arnold S, Stohl A, Huntrieser H, Roiger A, Schlager H, Stewart D, Avery M, Sachse G, Browell E, Ferrare R, Blake D (2007) Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic. J Geo Res 112:D10S41. doi:10.1029/2006JD007576CrossRefGoogle Scholar
  33. 33.
    Laj P, Klausen J, Bilde M, Pla-Duelmer C, Pappalardo G, Clerbaux C, Baltensperger U et al (2009) Measuring atmospheric composition change. Atmos Envir 43:5351–5414CrossRefGoogle Scholar
  34. 34.
    Ismail S, Gervin J, Wood HJ, Peri F (2004) Remote sensing of tropospheric chemistry using lidars from geostationary orbit. Proc SPIE 5659:146–154CrossRefGoogle Scholar
  35. 35.
    World Meteorological Organization (2007) WMO global atmospheric watch strategic plan: 2008–2015. Report 172Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.NASA Langley Research CenterHamptonUSA