Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Harmful Algal Blooms

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_829

Definition of the Subject and Its Importance

Harmful algal blooms (HABs) pose threats to the environment, public health, and a variety of commercial interests and industries. A single bloom can lead to devastating outcomes, including large mortalities of marine organisms (e.g., fish kills); toxic contamination of filter-feeding organisms such as bivalve shellfish that subsequently enter the market for distribution to consumers; economic hardships for fisheries, aquaculture, and recreational- and tourism-related industries; and a compromised quality of life for people living or working along affected shorelines. Depending upon the size of the bloom, its duration, and the number and types of impacts produced, a single bloom can generate multimillion-dollar losses spanning from local to international economies (see  Oceans and Human Health, Social and Economic Impacts for additional information on HAB-related economic impacts).

As well as a current concern, the issue of HABs will continue...

This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. 1.
    Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99CrossRefGoogle Scholar
  2. 2.
    Sandifer P et al (2007) Interagency oceans and human health research implementation plan: a prescription for the future. Joint Subcommittee on Ocean Science and Technology. Interagency Working Group on Harmful Algal Blooms, Hypoxia and Human Health, Washington, DCGoogle Scholar
  3. 3.
    Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Graneli E (ed) Toxic marine phytoplankton. Elsevier, New York, pp 29–40Google Scholar
  4. 4.
    Smayda TJ (1992) Global epidemic of noxious phytoplankton blooms in the sea: evidence for a global epidemic. In: Sherman K, Alexander LM, Gold BD (eds) Food chains: models and management of large marine ecosystems. Westview Press, San Francisco, pp 275–307Google Scholar
  5. 5.
    Smayda TJ, White AW (1990) Has there been a global expansion of algal blooms? If so is there a connection with human activities? In: Graneli E (ed) Toxic marine phytoplankton. Elsevier, New York, pp 516–517Google Scholar
  6. 6.
    Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46(2):220–235CrossRefGoogle Scholar
  7. 7.
    Ramsdell JS, Anderson DM, Glibert PM (eds) (2005) HARRNESS, Harmful algal research and response: a national environmental science strategy 2005–2015. Ecological Society of America, Washington, DCGoogle Scholar
  8. 8.
    Lopez CB et al (2008) Scientific assessment of marine harmful algal blooms. Joint Subcommittee on Ocean Science and Technology. Interagency Working Group on Harmful Algal Blooms, Hypoxia and Human Health, Washington, DCGoogle Scholar
  9. 9.
    Heisler J et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8(1):3–13CrossRefGoogle Scholar
  10. 10.
    Anderson DM et al (2008) Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8(1):39–53CrossRefGoogle Scholar
  11. 11.
    Huisman JM, Saunders GW (2007) Phylogeny and classification of the algae. In: McCarthy PM, Orchard AE (eds) Algae of Australia: introduction. Australian Biological Resources Study/CSIRO, Melbourne, pp 66–103Google Scholar
  12. 12.
    Smayda TJ, Reynolds CS (2001) Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J Plankton Res 23(5):447–461CrossRefGoogle Scholar
  13. 13.
    Vargo GA et al (2001) The hydrographic regime, nutrient requirements, and transport of a Gymnodinium breve Davis red tide on the west Florida shelf. In: Hallegraeff GM et al (eds) Harmful algal blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 157–159Google Scholar
  14. 14.
    Laws RM (1985) The ecology of the southern ocean. Am Sci 73(1):26–40Google Scholar
  15. 15.
    Croxall JP, Nicol S (2004) Management of southern ocean fisheries: global forces and future sustainability. Antarct Sci 16(4):559–584CrossRefGoogle Scholar
  16. 16.
    Smayda TJ, Reynolds CS (2003) Strategies of marine dinoflagellate survival and some rules of assembly. J Sea Res 49(2):95–106CrossRefGoogle Scholar
  17. 17.
    Sournia A (1974) Circadian periodicities in natural populations of marine phytoplankton. Mar Biol 12:325–389CrossRefGoogle Scholar
  18. 18.
    Kent ML, Whyte JNC, Latrace C (1995) Gill lesions and mortality in seawater pen-reared Atlantic salmon Salmo-Salar associated with dense bloom of Skeletonema costatum and Thalassiora species. Dis Aquat Organ 22(1):77–81CrossRefGoogle Scholar
  19. 19.
    Bell GR (1961) Penetration of spines from a marine diatom into gill tissue of Lingcod (Ophiodon elongatus). Nature 192(479):279–280CrossRefGoogle Scholar
  20. 20.
    Dagg MJ et al (2007) A review of water column processes influencing hypoxia in the northern Gulf of Mexico. Estuaries Coast 30(5):735–752Google Scholar
  21. 21.
    Rabalais NN et al (2002) Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present and future. Hydrobiologia 475(1):39–63CrossRefGoogle Scholar
  22. 22.
    Legrand C et al (2003) Allelopathy in phytoplankton – biochemical, ecological, and evolutionary aspects. Phycologia 42:406–419CrossRefGoogle Scholar
  23. 23.
    Kubanek J et al (2005) Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol Oceanogr 50(3):883–895CrossRefGoogle Scholar
  24. 24.
    Okaichi T, Nishio S (1976) Identification of ammonia as the toxic principle of red tide of Noctiluca miliaris. Bull Plankton Soc Jpn 23:75–80Google Scholar
  25. 25.
    Lancelot C et al (2011) Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the southern North Sea: an integrated modeling approach. Sci Total Environ 409(11):2179–2191CrossRefGoogle Scholar
  26. 26.
    Ciglenecki I et al (2003) Mucopolysaccharide transformation by sulfide in diatom cultures and natural mucilage. Mar Ecol Prog Ser 263:17–27CrossRefGoogle Scholar
  27. 27.
    Guiry MD (2011) AlgaeBase. http://www.algaebase.org [cited 10 May 2011]
  28. 28.
    Daugbjerg N et al (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317CrossRefGoogle Scholar
  29. 29.
    Scholin CA, Anderson DM (1994) Identification of group-specific and strain-specific genetic-markers for globally distributed Alexandrium (Dinophyceae). 1. RFLP Analysis of SSU ribosomal-RNA genes. J Phycol 30(4):744–754CrossRefGoogle Scholar
  30. 30.
    Scholin CA, Anderson DM (1996) LSU rDNA-based RFLP assays for discriminating species and strains of Alexandrium (Dinophyceae). J Phycol 32(6):1022–1035CrossRefGoogle Scholar
  31. 31.
    Scholin CA, Hallegraeff GM, Anderson DM (1995) Molecular evolution of the Alexandrium tamarense species complex (Dinophyceae)-dispersal in the North American and West Pacific regions. Phycologia 34:472–485CrossRefGoogle Scholar
  32. 32.
    Scholin CA et al (1994) Identification of group-specific and strain-specific genetic-markers for globally distributed Alexandrium (Dinophyceae) 2 sequence-analysis of a fragment of the Lsu ribosomal-RNA gene. J Phycol 30(6):999–1011CrossRefGoogle Scholar
  33. 33.
    Lilly EL, Halanych KM, Anderson DM (2007) Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae). J Phycol 43:1329–1338CrossRefGoogle Scholar
  34. 34.
    Kalaitzis JA et al (2010) Biosynthesis of toxic naturally-occurring seafood contaminants. Toxicon 56:244–258CrossRefGoogle Scholar
  35. 35.
    Etheridge SM (2010) Paralytic shellfish poisoning: seafood safety and human health perspectives. Toxicon 56:108–122CrossRefGoogle Scholar
  36. 36.
    Oshima Y, Blackburn SI, Hallegraeff GM (1993) Comparative study on paralytic shellfish toxin profiles of the dinoflagellate Gymnodinium catenatum from three different countries. Mar Biol 116:471–476CrossRefGoogle Scholar
  37. 37.
    Hall S et al (1990) The saxitoxins: sources, chemistry, and pharmacology. In: Hall S, Strichartz G (eds) Marine toxins: origins, structure, and molecular pharmacology. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  38. 38.
    Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, SunderlandGoogle Scholar
  39. 39.
    Ritchie JM, Rogart RB (1977) The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev Physiol Biochem Pharmacol 79:42–50Google Scholar
  40. 40.
    Kao CY et al (1967) Vasomotor and respiratory depressant actions of tetrodotoxin and saxitoxin. Arch Int Pharmacodyn Ther 165:438–450Google Scholar
  41. 41.
    Kao CY (1993) Paralytic shellfish poisoning. In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic, London, pp 75–86CrossRefGoogle Scholar
  42. 42.
    Doucette G et al (2006) Phycotoxin pathways in aquatic food webs: transfer, accumulation, and degradation. In: Graneli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin/HeidelbergGoogle Scholar
  43. 43.
    Anderson DM, White AW (1989) Toxic dinoflagellates and marine mammal mortalities. Woods Hole Oceanographic Institution Technical Report. WHOI-89-36 (CRC-89-6). Woods Hole Oceanographic Institution, Woods HoleGoogle Scholar
  44. 44.
    Geraci JR (1989) Clinical investigations of the 1987–1988 mass mortality of bottlenose dolphins along the US central and south Atlantic coast. In: Final report to the national marine fisheries service. U. S. Navy, Office of Naval Research and Marine Mammal Commission, Ontario Veterinary College, University of Guelph, Guelph, pp 1–63Google Scholar
  45. 45.
    Geraci JR et al (1989) Humpback whales (Megaptera novaeangliae) fatally poisoned by dinoflagellate toxin. Can J Fish Aquat Sci 46:1895–1898CrossRefGoogle Scholar
  46. 46.
    Shumway SE (1995) Phycotoxin-related shellfish poisoning: bivalve molluscs are not the only vectors. Rev Fish Sci 3:1–31CrossRefGoogle Scholar
  47. 47.
    White AW (1981) Marine zooplankton can accumulate and retain dinoflagellate toxins and cause fish kills. Limnol Oceanogr 26:103–109CrossRefGoogle Scholar
  48. 48.
    Doucette GJ et al (2006) PSP toxins in North Atlantic right whales (Eubalaena glacialis) and their zooplankton prey in the Bay of Fundy. Canada Mar Ecol Prog Ser 306:303–313CrossRefGoogle Scholar
  49. 49.
    Deeds JR et al (2008) Non-traditional vectors for paralytic shellfish poisoning. Mar Drugs 6:308–348CrossRefGoogle Scholar
  50. 50.
    Shumway SE (1990) A review of the effects of algal blooms on shellfish and aquaculture. J World Aquacul Soc 21:65–104CrossRefGoogle Scholar
  51. 51.
    RaLonde R (1996) Paralytic shellfish poisoning: the Alaska problem. In: Alaska’s marine resources. Marine Advisory Program, AnchorageGoogle Scholar
  52. 52.
    Bricelj VM, Lee JH, Cembella AD (1991) Influence of dinoflagellate cell toxicity on uptake and loss of paralytic shellfish toxins in the northern quahog Mercenaria mercenaria. Mar Ecol Prog Ser 74:33–46CrossRefGoogle Scholar
  53. 53.
    Reboreda A et al (2010) Decrease in marine toxin content in bivalves by industrial processes. Toxicon 55:235–243CrossRefGoogle Scholar
  54. 54.
    Trainer VL (2002) Harmful algal blooms on the U.S. west coast. In: Taylor FJ, Trainer VL (eds) Harmful algal blooms in the PICES region of the North Pacific. PICES Scientific Report No. 23. North Pacific Marine Science Organization, Sidney, pp 89–118Google Scholar
  55. 55.
    Nishitani L, Chew KK (1988) PSP toxins in the Pacific coast states: monitoring programs and effects on bivalve industries. J Shellfish Res 7:653–669Google Scholar
  56. 56.
    Anderson DM et al (2000) Estimated annual economic impacts from harmful algal blooms (HABs) in the US. Woods Hole Oceanographic Institute, Woods HoleCrossRefGoogle Scholar
  57. 57.
    Anderson DM et al (2005) Initial observation of the 2005 Alexandrium fundyense bloom in southern New England: general patterns and mechanisms. Deep Sea Res II 52:2856–2876CrossRefGoogle Scholar
  58. 58.
    Jin D, Thunberg E, Hoagland P (2008) Economic impact of the 2005 red tide event on commercial shellfish fisheries in New England. Ocean Coast Manag 51(5):420–429CrossRefGoogle Scholar
  59. 59.
    Adachi M, Sako Y, Ishida Y (1996) Analysis of Alexandrium (Dinophyceae) species using sequence of the 5.8S ribosomal DNA and internal transcribed spacer regions. J Phycol 32:424–432CrossRefGoogle Scholar
  60. 60.
    John U, Fensome RA, Medlin LK (2003) The application of a molecular clock based on molecular sequences and fossil record to explain biogeographic distributions within the Alexandrium tamarense “species complex” (Dinophyceae). Mol Biol Evol 20:1015–1027CrossRefGoogle Scholar
  61. 61.
    Medlin L et al (1998) Sequence comparison links toxic European isolates of Alexandrium tamarense from the Orkney Islands to toxic North American stocks. Eur J Protistol 34:329–335CrossRefGoogle Scholar
  62. 62.
    Hollingworth T, Wekell MM (1990) Paralytic shellfish poison biological method. Final action. In: Hellrich K (ed) Official methods of analysis. AOAC, Arlington, pp 881–882Google Scholar
  63. 63.
    AOAC (2000) AOAC official method 959.08 paralytic shellfish poison. In: Horwitz W (ed) Official methods of analysis of AOAC international. AOAC International, ArlingtonGoogle Scholar
  64. 64.
    Wekell JC, Hurst J, Lefebvre KA (2004) The origin of the regulatory limits for PSP and ASP toxins in shellfish. J Shellfish Res 23:927–930Google Scholar
  65. 65.
    Food and Agriculture Organization of the United Nations (2004) Marine biotoxins. Paper 80. FAO Food and Nutrition, Rome, pp 5–52Google Scholar
  66. 66.
    Jellet JF et al (1992) Paralytic shellfish poison (saxitoxin family) bioassays: automated endpoint determination and standardization of the in vitro tissue culture bioassay and comparison with the standard mouse bioassay. Toxicon 30:1143–1156CrossRefGoogle Scholar
  67. 67.
    Kogure K et al (1988) A tissue culture assay for the tetrodotoxin, saxitoxin, and related toxins. Toxicon 26:191–197CrossRefGoogle Scholar
  68. 68.
    Shimojo RY, Iwaoka WT (2000) A rapid hemolysis assay for the detection of sodium channel-specific marine toxins. Toxicology 154:1–7CrossRefGoogle Scholar
  69. 69.
    Davio SR, Fontelo PA (1984) A competitive displacement assay to detect saxitoxin and tetrodotoxin. Anal Biochem 141:199–204CrossRefGoogle Scholar
  70. 70.
    Doucette GJ et al (1997) Development and preliminary validation of a microtiter plate-based receptor binding assay for paralytic shellfish poisoning toxins. Toxicon 35(5):625–636CrossRefGoogle Scholar
  71. 71.
    Powell CL, Doucette GJ (1999) A receptor binding assay for paralytic shellfish poisoning toxins: recent advances and applications. Nat Toxins 7:393–400CrossRefGoogle Scholar
  72. 72.
    Chu FS, Huang X, Wei RD (1990) Enzyme-linked immunosorbent assay for microcystins in blue-green algal blooms. J Assoc Off Anal Chem 73(3):451–456Google Scholar
  73. 73.
    Usleber E, Schnieder E, Terplan G (1991) Direct enzyme immunoassay in microtitration plate and test strip format for the detection of saxitoxin in shellfish. Lett Appl Microbiol 13:275CrossRefGoogle Scholar
  74. 74.
    Bergantin JH, Sevilla F III (2010) Quartz crystal microbalance biosensor for saxitoxin based on immobilized sodium channel receptors. Anal Lett 43(3):476–486CrossRefGoogle Scholar
  75. 75.
    Metfies K et al (2005) Electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii with a DNA-biosensor. Biosens Bioelectron 20(7):1349–1357CrossRefGoogle Scholar
  76. 76.
    Diercks S, Metfies K, Medlin LK (2008) Development and adaptation of a multiprobe biosensor for the use in a semi-automated device for the detection of toxic algae. Biosens Bioelectron 23:1527–1533CrossRefGoogle Scholar
  77. 77.
    Fonfria ES et al (2007) Paralytic shellfish poisoning detection by surface plasmon resonance-based biosensors in shellfish matrixes. Anal Chem 79(16):6303–6311CrossRefGoogle Scholar
  78. 78.
    Chu FS et al (1996) Screening of paralytic shellfish poisoning toxins in naturally occurring samples with three different direct competitive enzyme-linked immunosorbent assays. J Agric Food Chem 44(12):4043–4047CrossRefGoogle Scholar
  79. 79.
    Garthwaite I et al (2001) Integrated enzyme-linked immunosorbent assay screening system for amnesic, neurotoxic, diarrhetic, and paralytic shellfish poisoning toxins found in New Zealand. J AOAC Int 84:1643–1648Google Scholar
  80. 80.
    Kawatsu K et al (2002) Development and application of an enzyme immunoassay based on a monoclonal antibody against gonyautoxin components of paralytic shellfish poisoning toxins. J Food Prot 65(8):1304–1308Google Scholar
  81. 81.
    Usleber E et al (2001) Immunoassay methods for paralytic shellfish poisoning toxins. J AOAC Int 84:1649–1656Google Scholar
  82. 82.
    Usleber E, Donald M, Straka M (1997) Comparison of enzyme immunoassay and mouse bioassay for determining paralytic shellfish poisoning toxins in shellfish. Food Addit Contam 14(2):193–198CrossRefGoogle Scholar
  83. 83.
    Gas F et al (2010) One step immunochromatographic assay for the rapid detection of Alexandrium minutum. Biosens Bioelectron 25:1235–1239CrossRefGoogle Scholar
  84. 84.
    Jellet JF et al (2002) Detection of paralytic shellfish poisoning (PSP) toxins in shellfish tissue using MIST Alert, a new rapid test, in parallel with the regulatory AOAC mouse bioassay. Toxicon 40(10):1407–1425CrossRefGoogle Scholar
  85. 85.
    Costa PR et al (2009) Comparative determination of paralytic shellfish toxins (PSTs) using five different toxin detection methods in shellfish species collected in the Aleutian islands, Alaska. Toxicon 54:313–320CrossRefGoogle Scholar
  86. 86.
    Oshiro M et al (2006) Paralytic shellfish poisoning surveillance in California using the Jellett Rapid PSP test. Harmful Algae 5:69–73CrossRefGoogle Scholar
  87. 87.
    Sullivan JJ (1988) Methods of analysis for DSP and PSP toxins in shellfish: a review. J Shellfish Res 7:587–595Google Scholar
  88. 88.
    Dell’Aversano C, Hess P, Quilliam MA (2005) Hydrophilic interaction liquid chromatography-mass spectrometry analysis of paralytic shellfish poisoning (PSP) toxins. J Chromatogr A1081:190Google Scholar
  89. 89.
    Oshima Y (1995) Post-column derivation HPLC methods for paralytic shellfish poisons. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. IOC of UNESCO, Paris, pp 81–94Google Scholar
  90. 90.
    Rourke WA et al (2008) Rapid postcolumn methodology for determination of paralytic shellfish toxins in shellfish tissue. J AOAC Int 91(3):589–597Google Scholar
  91. 91.
    Thomas K et al (2006) Analysis of PSP toxins by liquid chromatography with postcolumn oxidation and fluorescence detection. In: Henshilwood K et al (eds) Molluscan shellfish safety. The Marine Institute, Galway, pp 132–138Google Scholar
  92. 92.
    Lawrence JF, Menard C (1991) Liquid chromatographic determination of paralytic shellfish poisons in shellfish after prechromatographic oxidation. J Assoc Off Anal Chem 74:1006–1012Google Scholar
  93. 93.
    Lawrence JF et al (1991) A study of ten toxins associated with paralytic shellfish poison using prechromatographic oxidation and liquid chromatography with fluorescence detection. J Assoc Off Anal Chem 74:419–425Google Scholar
  94. 94.
    Lawrence JF, Niedzwiadek B, Menard C (2004) Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: interlaboratory study. J AOAC Int 87(1):83–100Google Scholar
  95. 95.
    Quilliam MA, Janecek M, Lawerence JF (1993) Characterization of the oxidation products of paralytic shellfish poisoning toxins by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 6:14–24Google Scholar
  96. 96.
    Laycock MV et al (1994) Isolation and purification procedures for the preparation of paralytic shellfish poisoning toxin standards. Nat Toxins 2:175–183CrossRefGoogle Scholar
  97. 97.
    NRC (2003) National Research Council Canada (NRC) – Institute for Marine Biosciences. http://www.nrc-cnrc.gc.ca/eng/ibp/imb.html [cited]
  98. 98.
    Van De Riet, J et al (2011) Liquid chromatography postcolumn oxidation (PCOX) method for the determination of paralytic shellfish toxins in mussels, clams, oysters, and scallops: collaborative study. J AOAC International 94:1154–1176Google Scholar
  99. 99.
    Anderson DM (1997) Bloom dynamics of toxic Alexandrium species in the northeastern US. Limnol Oceanogr 42(5 Pt 2):1009–1022CrossRefGoogle Scholar
  100. 100.
    Hurst JW (1975) History of paralytic shellfish poisoning on the Maine coast 1958–1974. In: First international conference on toxic dinoflagellate blooms. Massachusetts Science and Technology Foundation, WakefieldGoogle Scholar
  101. 101.
    Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726CrossRefGoogle Scholar
  102. 102.
    Boesch DF et al (1997) Harmful algal blooms in coastal waters: options for prevention, control, and mitigation. NOAA Coastal Ocean Program Decision Analysis Series No.10. NOAA Coastal Ocean Office, Silver Spring, 46pp + appendixGoogle Scholar
  103. 103.
    Mulligan HF (1975) Oceanographic factors associated with New England red tide blooms. In: First international conference on toxic dinoflagellate blooms. Massachusetts Science and Technology Foundation, WakefieldGoogle Scholar
  104. 104.
    He R et al (2008) Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. coupled biophysical numerical modeling. J Geophys Res Oceans 113:C07040–C07042CrossRefGoogle Scholar
  105. 105.
    McGillicuddy DJ Jr et al (2005) Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: results from a physical-biological model. Deep Sea Res II 52:2698–2714CrossRefGoogle Scholar
  106. 106.
    McGillicuddy DJ Jr et al (2003) A mechanism for offshore initiation of harmful algal blooms in the coastal Gulf of Maine. J Plankton Res 25(9):1131–1138CrossRefGoogle Scholar
  107. 107.
    Anderson DM, Taylor CD, Armbrust EV (1987) The effects of darkness and anaerobiosis on dinoflagellate cyst germination. Limnol Oceanogr 32:340–351CrossRefGoogle Scholar
  108. 108.
    Anderson DM et al (1982) Vertical and horizontal distributions of dinoflagellates cyst in sediments. Limnol Oceanogr 27:757–765CrossRefGoogle Scholar
  109. 109.
    Sinclair GA et al (2006) Nitrate uptake by Karenia brevis. I. Influences of prior environmental exposure and biochemical state on diel uptake of nitrate. Mar Ecol Prog Ser 328:117–124CrossRefGoogle Scholar
  110. 110.
    Sinclair GA et al (2006) Nitrate uptake by Karenia brevis. II. Behavior and uptake physiology in a nitrate-depleted mesocosm with a bottom nutrient source. Mar Ecol Prog Ser 328:125–131CrossRefGoogle Scholar
  111. 111.
    Walsh JJ, Steidinger KA (2001) Saharan dust and Florida red tides: the cyanophyte connection. J Geophy Res Oceans 106(C6):11597–11612CrossRefGoogle Scholar
  112. 112.
    Tester PA, Steidinger KA (1997) Gymnodinium breve red tide blooms: initiation, transport, and consequences of surface circulation. Limnol Oceanogr 42(5):1039–1051CrossRefGoogle Scholar
  113. 113.
    Vargo GA et al (2008) Nutrient availability in support of Karenia brevis blooms on the central West Florida shelf: what keeps Karenia blooming? Cont Shelf Res 28(1):73–98CrossRefGoogle Scholar
  114. 114.
    Baden DG, Mende TJ (1982) Toxicity of 2 toxins from the Florida red tide marine dinoflagellate Ptychodiscus brevis. Toxicon 20(2):457–461CrossRefGoogle Scholar
  115. 115.
    Flewelling LJ et al (2005) Red tides and marine mammal mortalities. Nature 435(7043):755–756CrossRefGoogle Scholar
  116. 116.
    Davis CC (1948) Gymnodinium brevis sp. nov a cause of discolored water and animal mortality in the Gulf of Mexico. Bot Gaz 109(3):358–360CrossRefGoogle Scholar
  117. 117.
    Fire SE et al (2008) Prevalence of brevetoxins in prey fish of bottlenose dolphins in Sarasota Bay, Florida. Mar Ecol Prog Ser 368:283–294CrossRefGoogle Scholar
  118. 118.
    Kirkpatrick B et al (2010) Inland transport of aerosolized Florida red tide toxins. Harmful Algae 9(2):186–189CrossRefGoogle Scholar
  119. 119.
    Kirkpatrick B et al (2006) Environmental exposures to Florida red tides: effects on emergency room respiratory diagnoses admissions. Harmful Algae 5(5):526–533CrossRefGoogle Scholar
  120. 120.
    Zaias J et al (2011) Repeated exposure to aerosolized brevetoxin-3 induces prolonged airway hyperresponsiveness and lung inflammation in sheep. Inhal Toxicol 23(4):205–211CrossRefGoogle Scholar
  121. 121.
    Hetland RD, Campbell L (2007) Convergent blooms of Karenia brevis along the Texas coast. Geophys Res Lett 34(19):5CrossRefGoogle Scholar
  122. 122.
    Flewelling LJ et al (2010) Brevetoxins in sharks and rays (Chondrichthyes, Elasmobranchii) from Florida coastal waters. Mar Biol 157(9):1937–1953CrossRefGoogle Scholar
  123. 123.
    Gannon DP et al (2009) Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar Ecol Prog Ser 378:171–186CrossRefGoogle Scholar
  124. 124.
    Kirkpatrick B et al (2004) Literature review of Florida red tide: implications for human health effects. Harmful Algae 3(2):99–115CrossRefGoogle Scholar
  125. 125.
    Backer LC et al (2003) Recreational exposure to aerosolized brevetoxins during Florida red tide events. Harmful Algae 2(1):19–28CrossRefGoogle Scholar
  126. 126.
    Fleming LE et al (2005) Initial evaluation of the effects of aerosolized Florida red tide toxins (Brevetoxins) in persons with asthma. Environ Health Perspect 113(5):650–657CrossRefGoogle Scholar
  127. 127.
    Steidinger KA et al (1999) Harmful algal blooms in Florida. Unpublished technical report submitted to the Florida Harmful Algal Bloom Task Force. Florida Marine Research Institute, St. Petersburg, p 63Google Scholar
  128. 128.
    Hoagland P et al (2009) The costs of respiratory illnesses arising from Florida gulf coast Karenia brevis blooms. Environ Health Perspect 117(8):1239–1243Google Scholar
  129. 129.
    Morgan KL, Larkin SL, Adams CM (2010) Red tides and participation in marine-based activities: estimating the response of Southwest Florida residents. Harmful Algae 9(3):333–341CrossRefGoogle Scholar
  130. 130.
    Morgan KL, Larkin SL, Adams CM (2009) Firm-level economic effects of HABS: a tool for business loss assessment. Harmful Algae 8(2):212–218CrossRefGoogle Scholar
  131. 131.
    Plakas SM, Dickey RW (2010) Advances in monitoring and toxicity assessment of brevetoxins in molluscan shellfish. Toxicon 56(2):137–149CrossRefGoogle Scholar
  132. 132.
    Stumpf R et al (2008) Hydrodynamic accumulation of Karenia on the west coast of Florida. Cont Shelf Res 28:189–213CrossRefGoogle Scholar
  133. 133.
    Sinclair G (2008) Environmental, behavioral, and physiological constraints on the persistence of near-bottom populations of Karenia brevis. Department of marine, earth, and atmospheric sciences, North Carolina State University, Raleigh, p 181Google Scholar
  134. 134.
    Schofield O et al (1999) Optical monitoring and forecasting systems for harmful algal blooms: possibility or pipe dream? J Phycol 35(6):1477–1496CrossRefGoogle Scholar
  135. 135.
    Janowitz GS, Kamykowski D (2006) Modeled Karenia brevis accumulation in the vicinity of a coastal nutrient front. Mar Ecol Prog Ser 314:49–59CrossRefGoogle Scholar
  136. 136.
    Liu G, Janowitz G, Kamykowski D (2001) Influence of environmental nutrient conditions on Gymnodinium breve (Dinophyceae) population dynamics: a numerical study. Mar Ecol Prog Ser 213:13–37CrossRefGoogle Scholar
  137. 137.
    Janowitz GS, Kamykowski D (1999) An expanded eularian model of phytoplankton environmental response. Ecol Model 118:237–247CrossRefGoogle Scholar
  138. 138.
    Van Dolah FM, Leighfield TA (1999) Diel phasing of the cell-cycle in the Florida red tide dinoflagellate, Gymnodinium breve. J Phycol 35(6):1404–1411CrossRefGoogle Scholar
  139. 139.
    Kamykowski D, Milligan EJ, Reed RE (1998) Biochemical relationships with the orientation of the autotrophic dinoflagellate Gymnodinium breve under nutrient replete conditions. Mar Ecol Prog Ser 167:105–117CrossRefGoogle Scholar
  140. 140.
    Kamykowski D, Yamazaki H (1997) A study of metabolism-influence orientation in the diel vertical migration of marine dinoflagellates. Limnol Oceanogr 42(5):1189–1202CrossRefGoogle Scholar
  141. 141.
    Dragovich A, Finucane J, Mays B (1961) Counts of red tide organisms, Gymnodinium breve and associated oceanographic data from Florida west coast, 1957–1959. In: U.S. Fish and Wildlife Service, Special. Science Report on Fish, Washington, DC, 175pGoogle Scholar
  142. 142.
    Steidinger KA et al (1998) Bloom dynamics and physiology of Gymnodinium breve with emphasis on the Gulf of Mexico. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Berlin, pp 133–153Google Scholar
  143. 143.
    Masserini RT, Fanning KA (2000) A sensor package for the simultaneous determination of nanomolar concentrations of nitrite, nitrate, and ammonia in seawater by fluorescence detection. Mar Chem 68(4):323–333CrossRefGoogle Scholar
  144. 144.
    Hecky RE, Kilham P (1988) Nutrient Limitation of phytoplankton in freshwater and marine environments: a review on the effects of enrichment. Limnol Oceanogr 33(4):796–822CrossRefGoogle Scholar
  145. 145.
    Walsh J, Steidinger K (2001) Saharan dust and Florida red tides: the cyanophyte connection. J Geophys Res 106(C6):11,597–11,612CrossRefGoogle Scholar
  146. 146.
    Mulholland MR et al (2006) Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico. Limnol Oceanogr 51(4):1762–1776CrossRefGoogle Scholar
  147. 147.
    Lester KM et al (2008) Zooplankton and Karenia brevis in the Gulf of Mexico. Cont Shelf Res 28(1):99–111CrossRefGoogle Scholar
  148. 148.
    Sinclair GA, Kamykowski D (2008) Benthic-pelagic coupling in sediment-associated populations of Karenia brevis. J Plankton Res 30(7):829–838CrossRefGoogle Scholar
  149. 149.
    Janowitz GS, Kamykowski D, Liu G (2008) A three-dimensional wind and behaviorally driven population dynamics model for Karenia brevis. Cont Shelf Res 28(1):177–188CrossRefGoogle Scholar
  150. 150.
    Hasle GR (2002) Are most of the domoic acid-producing species of the diatom genus Pseudo-nitzschia cosmopolites? Harmful Algae 1:137–146CrossRefGoogle Scholar
  151. 151.
    Smetacek V et al (2002) Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic polar front. Deep-Sea Res II 49:3835–3848CrossRefGoogle Scholar
  152. 152.
    Fryxell GA, Villac MC, Shapiro LP (1997) The occurrence of the toxic diatom genus Pseudo-nitzschia (Bacillariophyceae) on the West Coast of the USA, 1920–1996: a review. Phycologia 36:419–437CrossRefGoogle Scholar
  153. 153.
    Qi Y, Wang J, Zheng L (1994) The taxonomy and bloom ecology of Pseudo-nitzschia on the coasts of China. In: IOC-WESTPAC third international scientific symposium, Bali, pp 88–95Google Scholar
  154. 154.
    Zou JZ, Zhou MJ, Zhang C (1993) Ecological features of toxic Nitzschia pungens Grunow in Chinese coastal waters. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, AmsterdamGoogle Scholar
  155. 155.
    Evans KM et al (2004) Microsatellite marker development and genetic variation in the toxic marine diatom Pseudo-nitzschia multiseries (Bacillariophyceae). J Phycol 40(5):911–920CrossRefGoogle Scholar
  156. 156.
    Evans KM, Hayes PK (2004) Microsatellite markers for the cosmopolitan marine diatom Pseudo-nitzschia pungens. Mol Ecol Notes 4(1):125–126CrossRefGoogle Scholar
  157. 157.
    Evans KM, Kuhn SF, Hayes PK (2005) High levels of genetic diversity and low levels of genetic differentiation in North Sea Pseudo-nitzschia pungens (Bacillariophyceae) populations. J Phycol 41(3):506–514CrossRefGoogle Scholar
  158. 158.
    Hubbard KA, Rocap G, Armbrust EV (2008) Inter- and intraspecific community structure within the diatom genus Pseudo-nitzschia (Bacillariophyceae). J Phycol 44:637–649CrossRefGoogle Scholar
  159. 159.
    Orsini L et al (2004) Multiple rDNA ITS-types within the diatom Pseudo-nitzschia delicatissima (Bacillariophyceae) and their relative abundances across a spring bloom in the Gulf of Naples. Mar Ecol Prog Ser 271:87–98CrossRefGoogle Scholar
  160. 160.
    Thessen AE, Bowers HA, Stoecker DK (2009) Intra- and interspecies differences in growth and toxicity of Pseudo-nitzschia while using different nitrogen sources. Harmful Algae 8:792–810CrossRefGoogle Scholar
  161. 161.
    Bates SS (2000) Domoic-acid-producing diatoms: another genus added. J Phycol 36:978–985CrossRefGoogle Scholar
  162. 162.
    Bates SS et al (1989) Pennate diatom Nizschia pungens as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Can J Fish Aquatic Sci 46:1203–1215CrossRefGoogle Scholar
  163. 163.
    Lefebvre KA, Robertson A (2010) Domoic acid and human exposure risks: a review. Toxicon 56:218–230CrossRefGoogle Scholar
  164. 164.
    Teitelbaum J, Carpenter S, Cashman NR (1990) Neurologic sequelae after ingestion of mussels contaminated with domoic acid. N Engl J Med 323:1632–1633Google Scholar
  165. 165.
    Peng YG et al (1994) Neuroexcitatory and the neurotoxic actions of the amnesic shellfish poison, domoic acid. Neuropharmacol Neurotoxicol 5:981–985Google Scholar
  166. 166.
    Gulland FMD et al (2002) Domoic acid toxicity in California sea lions (Zalophus californianus): clinical signs, treatment and survival. Vet Rec 150:475–480CrossRefGoogle Scholar
  167. 167.
    Perl TM et al (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 322:1775–1780CrossRefGoogle Scholar
  168. 168.
    Todd ECD (1993) Domoic acid and amnesic shellfish poisoning: a review. J Food Prot 56:69–83Google Scholar
  169. 169.
    Wright JLC et al (1989) Identification of domoic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem 67:481–490CrossRefGoogle Scholar
  170. 170.
    Garrison DL et al (1992) Confirmation of domoic acid production by Pseudo-nitzschia australis (Bacillariophyceae) cultures. J Phycol 28:604–607CrossRefGoogle Scholar
  171. 171.
    Lefebvre KA et al (2002) Domoic acid in planktivorous fish in relation to toxic Pseudo-nitzschia cell densities. Mar Biol 140:625–631CrossRefGoogle Scholar
  172. 172.
    Scholin CA et al (2000) Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403:80–84CrossRefGoogle Scholar
  173. 173.
    Wekell JC et al (1994) Occurrence of domoic acid in Washington state razor clams (Siliqua patula) during 1991–1993. Nat Toxins 2:197–205CrossRefGoogle Scholar
  174. 174.
    Fritz L et al (1992) An outbreak of domoic acid poisoning attributed to the pennate diatom Pseudonitzschia australis. J Phycol 28:439–442CrossRefGoogle Scholar
  175. 175.
    Work TM et al (1993) Epidemiology of DA poisoning in brown pelicans (Pelecanus occidentalis) and Brandt’s cormorants (Phalacrocarax penicillatus) in California. J Zoo Wildl Med 24:54–62Google Scholar
  176. 176.
    Sierra-Beltran AP et al (1997) Sea bird mortality at Cabo San Lucas, Mexico: evidence that toxic diatom blooms are spreading. Toxicon 35:447–453CrossRefGoogle Scholar
  177. 177.
    Sierra-Beltran AP et al (1998) An overview of the marine food poisoning in Mexico. Toxicon 36:1493–1502CrossRefGoogle Scholar
  178. 178.
    Lefebvre KA et al (1999) Detection of domoic acid in northern anchovies and California sea lions associated with an unusual mortality event. Nat Toxins 7(3):85–92CrossRefGoogle Scholar
  179. 179.
    Goldstein T et al (2008) Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health. Proc R Soc Biol Sci Ser B 275:267–276CrossRefGoogle Scholar
  180. 180.
    Maucher JM, Ramsdell JS (2005) Domoic acid transfer to milk: evaluation of a potential route of neonatal exposure. Environ Health Perspect 115:1743–1746CrossRefGoogle Scholar
  181. 181.
    Grattan LM et al (2007) Domoic acid neurotoxicity in native Americans in the pacific northwest: human health project methods and update. In: Fourth symposium on harmful algae in the US, Woods HoleGoogle Scholar
  182. 182.
    Trainer VL et al (2007) Recent domoic acid closures of shellfish harvest areas in Washington State inland waters. Harmful Algae 6:449–459CrossRefGoogle Scholar
  183. 183.
    Trainer VL, Hickey BM, Horner RA (2002) Biological and physical dynamics of domoic acid production off the Washington coast. Limnol Oceanogr 47:1438–1446CrossRefGoogle Scholar
  184. 184.
    Dyson K, Huppert DD (2010) Regional economic impacts of razor clam beach closures due to harmful algal blooms (HABs) on the Pacific coast of Washington. Harmful Algae 9:264–271CrossRefGoogle Scholar
  185. 185.
    Bill BD et al (2006) The first closure of shellfish harvesting due to domoic acid in Puget Sound, Washington, USA. Afr J Mar Sci 28:437–442CrossRefGoogle Scholar
  186. 186.
    Ayers D, Reed H (2004) Managing important recreational and commercial shellfish fisheries around harmful algal blooms. In: 2003 Georgia Basin/Puget sound research conference, OlympiaGoogle Scholar
  187. 187.
    Hasle GR, Syvertsen EE (1997) Marine Diatoms. In: Tomas CR (ed) Identifying marine diatoms and dinoflagellates. Academic, San DiegoGoogle Scholar
  188. 188.
    Hasle GR, Lundholm N (2005) Pseudo-nitzschia seriata f. obtusa (Bacillariophyceae) raised in rank based on morphological, phylogenetic and distributional data. Phycologia 44:608–619CrossRefGoogle Scholar
  189. 189.
    Lundholm N et al (2003) A study of the Pseudo-nitzschia pseudodelicatissima/cuspidata complex (Bacillariophyceae): what is P. pseudodelicatissima? J Phycol 39:797–813CrossRefGoogle Scholar
  190. 190.
    Lundholm N et al (2006) Inter- and intraspecific variation of the Pseudo-nitzschia delicatissima complex (Bacillariophyceae) illustrated by rRNA probes, morphological data and phylogenetic analyses. J Phycol 42(2):464–481CrossRefGoogle Scholar
  191. 191.
    Fritz L (1992) The use of cellular probes in studying marine phytoplankton. Korean J Phycol 7:319–324Google Scholar
  192. 192.
    Rhodes LL (1998) Identification of potentially toxic Pseudo-nitzschia (Bacillariophyceae) in New Zealand coastal waters, using lectins. N Z J Mar Freshw Res 32:537–544CrossRefGoogle Scholar
  193. 193.
    Rhodes LL et al (1998) Domoic acid producing Pseudo-nitzschia species educed by whole cell DNA probe-based and immunochemical assays. In: Reguera B et al (eds) Harmful algae. Xunta de Galicia and IOC of UNESCO, Santiago de Compostela, pp 274–277Google Scholar
  194. 194.
    Cho ES et al (1999) The rapid differentiation of toxic Alexandrium and Pseudo-nitzschia species using fluorescent lectin probes. J Korean Soc Oceanogr 35:167–171Google Scholar
  195. 195.
    Fraga S et al (1998) Pseudo-nitzschia species isolated from Galician waters: toxicity, DNA content and lectin binding assay. In: Harmful algae: eighth international conference on harmful algae, Vigo, pp 270–273Google Scholar
  196. 196.
    Rhodes L, Scholin C, Garthwaite I (1998) Pseudo-nitzschia in New Zealand and the role of DNA probes and immunoassays in refining marine biotoxin monitoring programmes. Nat Toxins 6:105–111CrossRefGoogle Scholar
  197. 197.
    Andree KB et al (2011) Quantitative PCR coupled with melt curve analysis for detection of selected Pseudo-nitzschia spp. (Bacillariophyceae) from the northwestern Mediterranean Sea. Appl Environ Microbiol 77(5):1651–1659CrossRefGoogle Scholar
  198. 198.
    Cho ES, Kodaki Y, Park JG (2001) The comparison of two strains of toxic Pseudo-nitzschia multiseries (Hasle) Hasle and non-toxic Pseudo-nitzschia pungens (Grunow) Hasle isolated from Chinhae Bay, Korea. Algae 16:275–285Google Scholar
  199. 199.
    Lundholm N et al (2002) Morphology, phylogeny and taxonomy of species within Pseudo-nitzschia americana complex (Bacillariophyceae) with descriptions of two new species, Pseudo-nitzschia brasiliana and Pseudo-nitzschia linea. Phycologia 41:480–497CrossRefGoogle Scholar
  200. 200.
    Manhart JR et al (1995) Pseudo-nitzschia pungens and P. multiseries (Bacillariophyceae): nuclear ribosomal DNA’s and species differences. J Phycol 31:421–427CrossRefGoogle Scholar
  201. 201.
    McDonald SM, Sarno D, Zingone A (2007) Identifying Pseudo-nitzschia species in natural samples using genus-specific PCR primers and clone libraries. Harmful Algae 6(8):849–860CrossRefGoogle Scholar
  202. 202.
    Miller P, Scholin CA (1996) Identification of cultured Pseudo-nitzschia (Bacillariophyceae) using species specific LSU rRNA-targeted probes. J Phycol 32:646–655CrossRefGoogle Scholar
  203. 203.
    Miller P, Scholin CA (1998) Identification and enumeration of cultured and wild Pseudo-nitzschia (Bacillariophyceae) using species specific LSU rRNA-targeted fluorescent probes and filter-based whole cell hybridization. J Phycol 34:371–382CrossRefGoogle Scholar
  204. 204.
    Scholin CA et al (1996) Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats. Phycologia 35:190–197CrossRefGoogle Scholar
  205. 205.
    Scholin CA et al (1999) DNA probes and a receptor-binding assay for detection of Pseudo-nitzschia (Bacillariophyceae) species and domoic acid activity in cultured and natural samples. J Phycol 35:1356–1367CrossRefGoogle Scholar
  206. 206.
    Scholin CA et al (1997) Detection and quantification of Pseudo-nitzschia australis in cultured and natural populations using LSU rRNA-targeted probes. Limnol Oceanogr 42:1265–1272CrossRefGoogle Scholar
  207. 207.
    Scholin CA et al (1994) Ribosomal DNA sequences discriminate among toxic and non-toxic Pseudo-nitzschia species. Nat Toxins 2:152–165CrossRefGoogle Scholar
  208. 208.
    Cho ES et al (2002) Monthly monitoring of domoic acid producer Pseudo-nitzschia multiseries (Hasle) Hasle using species-specific DNA probes and WGA lectins and abundance of Pseudo-nitzschia species (Bacillariophyceae) from Chinhae Bay, Korea. Bot Mar 45:364–372CrossRefGoogle Scholar
  209. 209.
    Orsini L et al (2002) Toxic Pseudo-nitzschia multistriata (Bacillariophyceae) from the Gulf of Naples: morphology, toxin analysis and phylogenetic relationships with other Pseudo-nitzschia species. Eur J Phycol 37:247–257CrossRefGoogle Scholar
  210. 210.
    Parsons ML et al (1999) Pseudo-nitzschia species (Bacillariophyceae) in Louisiana coastal waters: molecular probes field trials, genetic variability, and domoic acid analyses. J Phycol 35:1368–1378CrossRefGoogle Scholar
  211. 211.
    Vrieling EG et al (1996) Identification of a domoic acid-producing Pseudo-nitzschia species (Bacillariophyceae) in the Dutch Wadden sea with electron microscopy and molecular probes. Eur J Phycol 31:333–340CrossRefGoogle Scholar
  212. 212.
    Greenfield D et al (2008) Field applications of the second-generation environmental sample processor (ESP) for remote detection of harmful algae: 2006–2007. Limnol Oceanogr Method 6:667–679CrossRefGoogle Scholar
  213. 213.
    Greenfield DI et al (2006) Application of the environmental sample processor (ESP) methodology for quantifying Pseudo-nitzschia australis using ribosomal RNA-targeted probes in sandwich and fluorescent in situ hybridization. Limnol Oceanogr Method 4:426–435CrossRefGoogle Scholar
  214. 214.
    Scholin C et al (2009) Remote detection of marine microbes, small invertebrates, harmful algae and biotoxins using the environmental sample processor (ESP). Oceanography 22:158–167CrossRefGoogle Scholar
  215. 215.
    AOAC (1990) Paralytic shellfish poison. Biological method. Final action. In: Hellrich K (ed) Official method of analysis. Association of Official Analytical Chemists (AOAC), Arlington, pp 881–882Google Scholar
  216. 216.
    Van Dolah FM et al (1997) A microplate receptor assay for the amnesic shellfish poisoning toxin, domoic acid, utilizing a cloned glutamate receptor. Anal Biochem 245:102–105CrossRefGoogle Scholar
  217. 217.
    Garthwaite I et al (1998) An immunoassay for determination of domoic acid in shellfish and sea water. In: Reguera B et al (eds) Harmful algae. Xunta de Galicia and IOC of UNESCO, Santiago de Compostela, pp 559–562Google Scholar
  218. 218.
    Kawatsu K, Hamano Y, Noguchi T (1999) Production and characterization of a monoclonal antibody against domoic acid and its application to enzyme immunoassay. Toxicon 37:1579–1589CrossRefGoogle Scholar
  219. 219.
    Smith DS, Kitts DD (1994) A competitive enzyme-linked immunoassay for domoic acid determination in human body fluids. Food Chem Toxicol 32(12):1147–1154CrossRefGoogle Scholar
  220. 220.
    Smith DS, Kitts DD (1995) Enzyme Immunoassay for the determination of domoic acid in mussel extracts. J Agric Food Chem 43:367–371CrossRefGoogle Scholar
  221. 221.
    Fernandez ML, Cembella AD (1995) Part B. Mammalian bioassays. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO, Paris, pp 213–228Google Scholar
  222. 222.
    Lawrence JF et al (1989) Liquid chromatographic determination of domoic acid in shellfish products using the paralytic shellfish extraction procedure of the association of official analytical chemists. J Chromatogr 462:349–356CrossRefGoogle Scholar
  223. 223.
    Lawrence JF, Charbonneau CF, Menard C (1991) Liquid chromatographic determination of domoic acid in mussels, using AOAC paralytic shellfish poison extraction procedures: collaborative study. J Assoc Off Anal Chem 74(1):68–72Google Scholar
  224. 224.
    Ciminiello P et al (2005) Hydrophilic interaction liquid chromatography/mass spectrometry for determination of domoic acid in Adriatic shellfish. Rapid Commun Mass Spectrom 19(4):2030–2038CrossRefGoogle Scholar
  225. 225.
    Hummert C, Reichelt M, Luckas B (1997) Automatic HPLC-UV determination of domoic acid in mussels and algae. Chromatographia 45:284–288CrossRefGoogle Scholar
  226. 226.
    Quilliam MA et al (1989) High-performance liquid-chromatography of domoic acid, a marine neurotoxin, with application to shellfish and plankton. Int J Environ Anal Chem 36:139–154CrossRefGoogle Scholar
  227. 227.
    European Union Reference Laboratory for Marine Biotoxins (ed) (2010) Standard operating procedure for determination of domoic acid (ADP toxins) in molluscs by UPLC-MS. European Union Reference Laboratory for Marine Biotoxins/Agencia Espanola de Seguridad Alimentaria y Nutricion, VigoGoogle Scholar
  228. 228.
    Rafuse C et al (2004) Rapid monitoring of toxic phytoplankton and zooplankton with a lateral-flow immunochromatographic assay for ASP and PSP toxins. In: Steidinger KA (ed) Harmful algae. Florida Fish and Wildlife Conservation Commission and Intergovernmental Oceanographic Commission of UNESCO, St. PetersburgGoogle Scholar
  229. 229.
    Turrell E et al (2008) Detection of Pseudo-nitzschia (Bacillariophyceae) species and amnesic shellfish toxins in Scottish coastal waters using oligonucleotide probes and the Jellet rapid test. Harmful Algae 7(4):443–458CrossRefGoogle Scholar
  230. 230.
    Parsons ML, Dortch Q, Turner RE (2002) Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnol Oceanogr 47(2):551–558CrossRefGoogle Scholar
  231. 231.
    Dortch Q et al (2000) Pseudo-nitzschia spp. in the northern Gulf of Mexico: overview and response to increasing eutrophication. In: Symposium on harmful marine algae in the U.S. Marine Biological Laboratory, Woods Hole, p 27Google Scholar
  232. 232.
    McFadyen A, Hickey BM, Foreman MGG (2005) Transport of surface waters from the Juan de Fuca eddy region to the Washington coast. Cont Shelf Res 25:2008–2021CrossRefGoogle Scholar
  233. 233.
    Bates SS et al (1991) Controls on domoic acid production by the diatom Nitzschia pungens f. multiseries in culture: nutrient and irradiance. Can J Fish Aquatic Sci 48:1136–1144CrossRefGoogle Scholar
  234. 234.
    Pan Y, Subba Rao DV, Mann KH (1996) Changes in domoic acid production and cellular chemical composition of the toxigenic diatom Pseudo-nitzschia multiseries under phosphate limitation. J Phycol 32:371–381CrossRefGoogle Scholar
  235. 235.
    Pan Y et al (1996) Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries. I. Batch culture studies. Mar Ecol Prog Ser 131:225–233CrossRefGoogle Scholar
  236. 236.
    Pan Y et al (1996) Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries. II. Continuous culture studies. Mar Ecol Prog Ser 131:235–243CrossRefGoogle Scholar
  237. 237.
    Van Apeldoorn ME, van Egmond HP, Speijers GJA (1999) Amnesic shellfish poisoning: a review. In: RIVM report 388802 019. National Institute of Public Health and the Environment, the NetherlandsGoogle Scholar
  238. 238.
    Maldonado MT, Hughes MP, Rue EL (2002) The effects of Fe and Cu on growth and domoic acid production by Pseudo-nitzschia multiseries and Pseudo-nitzschia australis. Limnol Oceanogr 47:515–526CrossRefGoogle Scholar
  239. 239.
    de Baar HJW et al (2005) Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J Geophys Res Oceans 110:1–24Google Scholar
  240. 240.
    Marchetti A et al (2008) Identification and assessment of domoic acid production in oceanic Pseudo-nitzschia (Bacillariophyceae) from iron-limited waters in the northeast subartic Pacific. J Phycol 44(3):650–661CrossRefGoogle Scholar
  241. 241.
    Bates SS et al (1995) Enhancement of domoic acid production by reintroducing bacteria to axenic cultures of the diatom Pseudo-nitzschia multiseries. Nat Toxins 3:429–435CrossRefGoogle Scholar
  242. 242.
    Bates SS et al (2004) Interaction between bacteria and the domoic-acid-producing diatom Pseudo-nitzschia multiseries (Hasle) Hasle; can bacteria produce domoic acid autonomously? Harmful Algae 3:11–20CrossRefGoogle Scholar
  243. 243.
    Kaczmarska I et al (2005) Diversity and distribution of epibiotic bacteria on Pseudo-nitzschia multiseries (Bacillariophyceae) in culture, and comparison with those on diatoms in native seawater. Harmful Algae 4:725–741CrossRefGoogle Scholar
  244. 244.
    Brock TD (1973) Evolutionary and ecological aspects of the cyanophytes. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. University of California Press, Berkeley, pp 487–500Google Scholar
  245. 245.
    Whitton BA, Potts M (eds) (2002) The ecology of cyanobacteria: their diversity in time and space. Academic, New YorkGoogle Scholar
  246. 246.
    Schofp JW (2002) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Academic, New York, pp 13–35Google Scholar
  247. 247.
    Francis G (1878) Poisonous Australian lake. Nature 18:11–12CrossRefGoogle Scholar
  248. 248.
    Codd GA, Bell SG, Brooks WP (1989) Cyanobacterial toxins in water. Water Sci Technol 21:1–13Google Scholar
  249. 249.
    Pilotto LS et al (1997) Health effects of exposure to cyanobacteria (blue-green algae) due to recreational water-related activities. Aust N Z J Public Health 21:562–566CrossRefGoogle Scholar
  250. 250.
    Stewart I (2008) Cyanobacterial poisoning in livestock, wild animals, and birds–an overview. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, p 500Google Scholar
  251. 251.
    Teixera MGLC et al (1993) Gastroenteritis epidemic in the area of the Itaparica Dam, Bahia, Brazil. Bull Pan Am Health Organ 27:244–253Google Scholar
  252. 252.
    Tisdale ES (1931) Epidemic of intestinal disorders in Charleston, W.Va., occurring simultaneously with unprecedented water supply conditions. Am J Public Health 21:198–200CrossRefGoogle Scholar
  253. 253.
    Turner PC et al (1990) Pneumonia associated with cyanobacteria. Br Med J 300:1440–1441CrossRefGoogle Scholar
  254. 254.
    Metcalf JS, Codd GA (2004) Cyanobacterial toxins in the water environment. A review of current knowledge. Foundation for Water Research, MarlowGoogle Scholar
  255. 255.
    Chorus I, Bartram J (eds) (1999) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management. E & FN Spon, London (on behalf of the World Health Organization)Google Scholar
  256. 256.
    Falconer IR (1993) Measurement of toxins from blue-green algae in water and foodstuffs. In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic, New York, pp 165–176CrossRefGoogle Scholar
  257. 257.
    Cheng YS et al (2007) Characterization of aerosols containing microcystin. Mar Drugs 5:136–150CrossRefGoogle Scholar
  258. 258.
    Falconer IR, Buckley TH (1989) Tumour promotion by Microcystis sp., a blue-green algae occurring in water supplies. Med J Australia 150:351–352Google Scholar
  259. 259.
    Falconer IR, Humpage AR (1996) Tumour promotion by cyanobacterial toxins. Phycologia 35(Suppl 6):74–79CrossRefGoogle Scholar
  260. 260.
    Fujiki H, Sueoka E, Suganuma M (1996) Carcinogenesis of microcystins. In: Watanabe MF et al (eds) Toxic microcystis. CRC Press, Boca Raton, pp 203–232Google Scholar
  261. 261.
    Humpage AR et al (2000) Microcystins (cyanobacterial toxins) in drinking water enhance the growth of aberrant crypt foci in the mouse colon. J Toxicol Environ Health A 61:155–165CrossRefGoogle Scholar
  262. 262.
    Zhou L, Yu H, Chen K (2002) Relationship between microcystin in drinking water and colorectal cancer. Biomed Environ Sci 15(2):166–171Google Scholar
  263. 263.
    World Health Organization (2008) Guidelines for drinking-water quality: incorporating the 1st and 2nd addenda. World Health Organization, GenevaGoogle Scholar
  264. 264.
    Burns J (2008) Toxic cyanobacteria in Florida waters. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, p 500Google Scholar
  265. 265.
    Westrick JA (2008) Cyanobacterial toxin removal in drinking water treatment processes and recreational water. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, p 500Google Scholar
  266. 266.
    Carmichael WW (2001) Assessment of blue-green algal toxins in raw and finished drinking water. AWWA Research Foundation and American Water Works Association, DenverGoogle Scholar
  267. 267.
    Chorus I, Fastner F (2001) Recreational exposure to cyanotoxins. In: Chorus I (ed) Cyanotoxins, occurrence, causes, consequences. Springer, Heidelberg, pp 190–199Google Scholar
  268. 268.
    Miller MA et al (2010) Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters. PLoS One 5(9):e12576CrossRefGoogle Scholar
  269. 269.
    Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol 203:201–218CrossRefGoogle Scholar
  270. 270.
    Funari E, Testai E (2007) Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 38(2):97–125CrossRefGoogle Scholar
  271. 271.
    Henricksen P et al (1997) Detection of an anatoxin-a(s)-like anticholinesterase in natural blooms and cultures of cyanobacteria/blue-green algae from Danish lakes and in the stomach contents of poisoned birds. Toxicon 35(1111):901–913CrossRefGoogle Scholar
  272. 272.
    Matsunaga S et al (1989) Anatoxin-a(s), a potent anticholinesterase from Anabaena flos-aquae. J Am Chem Soc 111(494):8021–8023CrossRefGoogle Scholar
  273. 273.
    Mahmood NA, Carmichael WW (1986) Paralytic shellfish poison produced by the freshwater cyanobacterium Aphanizomeno flos-aquae NH-5. Toxicon 24:175–186CrossRefGoogle Scholar
  274. 274.
    Stewart I, Schluter PJ, Shaw GR (2006) Cyanobacterial lipopolysaccharides and human health – a review. Environ Health A Global Access Sci Source 5:7Google Scholar
  275. 275.
    Smith JL, Boyer GL, Zimba PV (2008) A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280:5–20CrossRefGoogle Scholar
  276. 276.
    Fujiki H et al (1985) A blue-green alga from Okinawa contains aplysiatoxins, the third class of tumour promoters. Jpn J Cancer Res 76:257–259Google Scholar
  277. 277.
    Shimizu Y (1996) Microalgal metabolites: a new perspective. Annu Rev Microbiol 50:431–465CrossRefGoogle Scholar
  278. 278.
    Fujiki H et al (1990) New tumour promoters from marine natural products. In: Hall S, Strichartz G (eds) Marine toxins. Origin, structure and molecular pharmacology. American Chemical Society, Washington, DC, pp 232–240CrossRefGoogle Scholar
  279. 279.
    Gorham PR, Carmichael WW (1988) Hazards of freshwater blue-green algae (cyanobacteria). In: Lembi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, New York, pp 404–431Google Scholar
  280. 280.
    Aguirre AA et al (2006) Hazards associated with the consumption of sea turtle meat and eggs: a review for health care workers and the general public. EcoHealth 3(3):141–153CrossRefGoogle Scholar
  281. 281.
    Yasumoto Y (1998) Fish poisoning due to toxins of microalgal origins in the Pacific. Toxicon 36:1515–1518CrossRefGoogle Scholar
  282. 282.
    Papapetropoulos S (2007) Is there a role for naturally occurring cyanobacterial toxins in neurodegeneration? The beta-N-methylamino-L-alanine (BMAA) paradigm. Neurochem Int 50:998–1003CrossRefGoogle Scholar
  283. 283.
    Wilson JM et al (2002) Behavioral and neurological correlates of ALS-parkinsonian dementia complex in adult mice fed washed cycad flour. Neuromol Med 1:207–221CrossRefGoogle Scholar
  284. 284.
    Rao SD et al (2006) BMAA selectively injures motor neurons via AMP/kainate receptor activation. Exp Neurol 201:244–252CrossRefGoogle Scholar
  285. 285.
    Lobner D et al (2007) Beta-N-methyl-amino-L-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol Dis 25(2):360–365CrossRefGoogle Scholar
  286. 286.
    Buenz EJ, Howe CL (2007) Beta-methylamino-alanine (BMAA) injures hippocampal neurons in vivo. Neurotoxicology 28(3):702–704CrossRefGoogle Scholar
  287. 287.
    Liu XQ et al (2010) Selective death of cholinergic neurons induced by beta-methylamino-L-alanine. Neuroreport 21(1):55–58CrossRefGoogle Scholar
  288. 288.
    Karlsson O et al (2009) Selective brain uptake and behavioral effects of the cyanobacterial toxin BMAA (β-N-methylamino-L-alanine) following neonatal administration to rodents. Toxicol Sci 109(2):286–295CrossRefGoogle Scholar
  289. 289.
    Wilde SB et al (2005) Avian vacuolar myelinopathy linked to exotic aquatic plants and a novel cyanobacterial species. Environ Toxicol 20(3):348–353CrossRefGoogle Scholar
  290. 290.
    Bidigare RR et al (2009) Cyanobacteria and BMAA: possible linkage with avian vacuolar myelinopathy (AVM) in the southeastern United States. Amyotroph Lateral Scler 10(Suppl 2):71–73CrossRefGoogle Scholar
  291. 291.
    Fischer JR, Lewis-Weis LA, Tate CM (2003) Experimental vacuolar myelinopathy in red-tailed hawks. J Wildl Dis 39(2):400–406Google Scholar
  292. 292.
    Birrenkot AH et al (2004) Establishing a food-chain link between aquatic plant material and avian vacuolar myelinopathy in mallards (Anas plytyrhynchos). J Wildl Dis 40(3):485–494Google Scholar
  293. 293.
    Murch SJ, Cox PA, Banack SA (2004) A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proc Natl Acad Sci U S A 101:12228–12231CrossRefGoogle Scholar
  294. 294.
    Esterhuizen M, Downing TG (2008) Beta-N-methylamino-L-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotoxicol Environ Saf 71:309–313CrossRefGoogle Scholar
  295. 295.
    Johnson HE et al (2008) Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produces the neurotoxic amino acid BMAA. J Ethnopharmacol 118:159–165CrossRefGoogle Scholar
  296. 296.
    Li A et al (2010) Detection of the neurotoxin BMAA within cyanobacteria isolated from freshwater in China. Toxicon 55:947–953CrossRefGoogle Scholar
  297. 297.
    Metcalf JS et al (2008) Co-occurrence of beta-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environ Microbiol 10(3):702–708CrossRefGoogle Scholar
  298. 298.
    Cox PA et al (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci U S A 102:5074–5078CrossRefGoogle Scholar
  299. 299.
    Caller TA et al (2009) A cluster of amyotrophic lateral sclerosis in New Hampshire: a possible role for toxic cyanobacteria blooms. Amyotroph Lateral Scler 10(Suppl 2):101–108CrossRefGoogle Scholar
  300. 300.
    Tucker CS (2000) Off-flavor problems in aquaculture. Rev Fish Sci 8(1):45–88CrossRefGoogle Scholar
  301. 301.
    Dodds WK et al (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19CrossRefGoogle Scholar
  302. 302.
    World Health Organization (2003) Guidelines for safe recreational water environments. Volume 1: coastal and fresh waters. World Health Organization, GenevaGoogle Scholar
  303. 303.
    Steffensen DA (2008) Economic cost of cyanobacterial blooms. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs, vol 619, Advances in experimental medicine and biology. Springer, New York, 500ppGoogle Scholar
  304. 304.
    Kenefick SL et al (1992) Odorous substances and cyanobacterial toxins in praire drinking water sources. Water Sci Technol 25:147–154Google Scholar
  305. 305.
    Paerl HW (2008) Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs, vol 619, Advances in experimental medicine and biology. Springer, New York, 500ppGoogle Scholar
  306. 306.
    Garcia-Villada L et al (2004) Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterization and future implications in the use of copper sulphate as algaecide. Water Res 38:2207–2213CrossRefGoogle Scholar
  307. 307.
    Hitzfeld BC, Hoeger SJ, Dietrich DR (2000) Cyanobacterial Toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect 108(6):113–122Google Scholar
  308. 308.
    Hoeger SJ, Hitzfeld BC, Dietrich DR (2005) Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol Appl Pharmacol 203:231–242CrossRefGoogle Scholar
  309. 309.
    Hoeger SJ et al (2004) Occurrence and elimination of cyanobacterial toxins in two Australian drinking water treatment plants. Toxicon 43(14248):639–649CrossRefGoogle Scholar
  310. 310.
    Jones G, Gurney S, Rocan D (1996) Water quality/toxic algae study interim report: summary of the 1995 field season results. Manitoba Environment, 4 June 1996Google Scholar
  311. 311.
    Lambert TW, Holmes CFB, Hrudey SE (1996) Adsorption of microcystin-LR by activating carbon and removal in full-scale water treatment. Water Res 30(6):1411–1422CrossRefGoogle Scholar
  312. 312.
    Wannemacher JRW et al (1993) Treatment for removal of biotoxins from drinking water. US Army Biomedical Research and Development Laboratory, Fort Detrick, FrederickGoogle Scholar
  313. 313.
    James H, Lloyd A (2002) Blue-green algae and their toxins – Great Britain’s perspective. In: Proceedings of the health effects of exposure to cyanobacteria toxins: state of the science, SarasotaGoogle Scholar
  314. 314.
    Kim S-C, Lee D-K (2005) Inactivation of algal blooms in eutrophic water of drinking water supplies with the photocatalysis of TiO2 thin film on hollow glass beads. Water Sci Technol 52(9):145–152Google Scholar
  315. 315.
    Ueno Y et al (1996) Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17:1317CrossRefGoogle Scholar
  316. 316.
    Koskenniemi K et al (2007) Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea. Appl Environ Microbiol 73(7):2173–2179CrossRefGoogle Scholar
  317. 317.
    Rinta-Kanto JM et al (2005) Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ Sci Technol 39(11):4198–4205CrossRefGoogle Scholar
  318. 318.
    Codd GA et al (2001) Analysis of cyanobacterial toxins by physiochemical and biochemical methods. J AOAC Int 84:1625–1635Google Scholar
  319. 319.
    Dorr FA et al (2010) Methods for detection of anatoxin-a(s) by liquid chromatography coupled to electrospray ionization-tandem mass spectrometry. Toxicon 55:92–99CrossRefGoogle Scholar
  320. 320.
    Fischer WJ et al (2001) Congener-independent immunoassay for microcystins and nodularins. Environ Sci Technol 35:4849–4856CrossRefGoogle Scholar
  321. 321.
    Metcalf JS, Bell SG, Codd GA (2001) Colorimetric immuno-protein phophatase inhibition assay for specific detection of microcystins and nodularins of cyanobacteria. Appl Environ Microbiol 67:904–909CrossRefGoogle Scholar
  322. 322.
    Anderson WB, Slawson RM, Mayfield CI (2002) A review of drinking-water-associated endotoxin, including potential routes of human exposure. Can J Microbiol 48:567–587CrossRefGoogle Scholar
  323. 323.
    Carmichael WW (1992) Occurrence of toxic cyanobacteria. US EPA. Agency, Cincinnati, OH, pp 15–26Google Scholar
  324. 324.
    Oberholster PJ, Botha A-M, Grobbelaar JU (2004) Microcystis aeruginosa: source of toxic microcystins in drinking water. African J Biotech 3:159–168Google Scholar
  325. 325.
    Carmichael WW (2008) A world overview one-hundred, twenty-seven years of research on toxic cyanobacteria – where do we go from here? In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs, vol 619, Advances in experimental medicine and biology. Springer, New York, 500 ppGoogle Scholar
  326. 326.
    Burns J, Williams C, Chapman A (2002) Cyanobacteria and their toxins in Florida surface waters. In: Proceedings of the health effects of exposure to cyanobacteria toxins: state of the science, SarasotaGoogle Scholar
  327. 327.
    Giddings M et al (2002) Cyanobacterial toxins: the development and evaluation of method to determine microcystin levels in Canadian water supplies. In: Proceedings of the health effects of exposure to cyanobacteria toxins: state of the science, SarasotaGoogle Scholar
  328. 328.
    Boyer GL (2008) Cyanobacterial toxins in New York and the lower great lakes ecosystems. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, p 500Google Scholar
  329. 329.
    Fristachi A et al (2007) A preliminary exposure assessment of microcystins from consumption of drinking water in the United States. Lake Reserv Manag 23(2):203–210CrossRefGoogle Scholar
  330. 330.
    Osswald J et al (2007) Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ Int 33:1070–1089CrossRefGoogle Scholar
  331. 331.
    Falconer IR (2005) Cyanobacterial toxins of drinking water supplies: cylindrospermopsins and microcystins. CRC Press, FloridaGoogle Scholar
  332. 332.
    Walsby AE, Schanz F, Schmid M (2006) The Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zurich. New Phytol 169:109–122CrossRefGoogle Scholar
  333. 333.
    Metting B, Pyne JW (1986) Biologically-active compounds from microalgae. Enzyme Microb Technol 8:386–394CrossRefGoogle Scholar
  334. 334.
    Sellner KG (1997) Physiology, ecology, and toxic sproperties of marine cyanobacteria blooms. Limnol Oceanogr 42(5 Pt 2):1089–1104CrossRefGoogle Scholar

Books and Reviews

  1. Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52(7):342–347CrossRefGoogle Scholar
  2. Babin M et al (2005) New approaches and technologies for observing harmful algal blooms. Oceanography 18(2):210–227CrossRefGoogle Scholar
  3. Bauer M et al (2010) The importance of human dimensions research in managing harmful algal blooms. Front Ecol Environ 8(2):75–83CrossRefGoogle Scholar
  4. Fleming LE et al (2011) Review of Florida red tide and human health effects. Harmful Algae 10(2):224–233CrossRefGoogle Scholar
  5. Graneli E, Turner JT (eds) (2006) Ecology of harmful algae. Springer, Berlin/HeidelbergGoogle Scholar
  6. Hoagland P et al (2002) The economic effects of harmful algal blooms in the United States: estimates, assessment issues, and information needs. Estuaries Coast 25(4):819–837CrossRefGoogle Scholar
  7. Hudnell HK (ed) (2008) Advances in experimental medicine and biology, vol 619. Springer, New YorkGoogle Scholar
  8. Hudnell HK (2010) Harmful algal blooms and natural toxins in fresh and marine waters – exposure, occurrence, detection, toxicity, control, management and policy. Toxicon 55(5):1024–1034CrossRefGoogle Scholar
  9. Hudnell HK et al (2010) Freshwater harmful algal bloom (FHAB) suppression with solar powered circulation (SPC). Harmful Algae 9:208–217CrossRefGoogle Scholar
  10. Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10(2):113–390CrossRefGoogle Scholar
  11. Lewis RJ, Poli M (2010) Toxins in seafood. Toxicon 56(2):107–258 (Special Issue)CrossRefGoogle Scholar
  12. Secher S (2009) Measures to control harmful algal blooms. The Plymouth Student Scientist 2(1):212–227Google Scholar
  13. Shumway S, Rodrick G (eds) (2009) Shellfish safety and quality. Woodhead, CambridgeGoogle Scholar
  14. Valiela I et al (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42(5 Pt 2):1105–1118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Southern MississippiHattiesburgUSA
  2. 2.DeFelice Marine CenterLouisiana Universities Marine ConsortiumChauvinUSA