Skip to main content

Definition of the Subject and Its Importance

Remote-sensing for oil spills is reviewed. The technical aspects of sensors are reviewed and the benefits and limitations of each sensor are given. Oil spill response often requires that remote sensing is used to detect and map the spill of interest. A wide variety of technologies had been tried.

A common and economical sensor is an infrared camera or an IR/UV system. This sensor class has limited utility but has the lowest cost of any sensor. The inherent weaknesses include the inability to discriminate oil on beaches, among weeds or debris and under certain lighting conditions, oil is not detected. Furthermore, water-in-oil emulsions are often not detected in the infrared. The laser fluorosensor is a most-useful instrument because of its unique capability to identify oil on backgrounds that include water, soil, weeds, ice, and snow. It is the only sensor that can positively...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Laser fluorosensor:

A specific substance detection systems that employ a laser to excite a substance which then gives off radiation at another wavelength. This wavelength is typically unique to the substance being detected.

Microwave sensor:

Devices which detect radiation in the microwave region of the electromagnetic spectrum. Some devices, such as radar, also emit waves in the microwave spectrum to analyze the reflectivity of the fields of view.

Optical sensor:

Sensors which analyze the field-of-view in the electromagnetic spectrum from the infrared to the ultraviolet region. Typically the focus is the visible region.

Passive microwave sensor:

A sensor which analyzes the natural microwave radiation in a field-of-view.

Radarsat:

One of two radar satellites that are often used to detect and track oil spills.

Radiometer:

Any device that measures electromagnetic radiation typically the abundance of radiation in a given spectral range is measured.

Scatterometer:

A device that measures the scattering of a particular spectral range of radiation.

Ship discharge:

An oil spill resulting from a discharge (usually illegal) from a ship. Ships may discharge lubrication oil, oil from washing, or other waste oils.

Thickness sensor:

Any oil spill sensor that specifically measures oil slick thickness.

Bibliography

  1. NAS (2003) Oil in the sea. National Academy of Sciences, Washington, DC

    Google Scholar 

  2. Robbe N, Hengstermann T (2006) Remote sensing of marine oil spills from airborne platforms using multi-sensor systems. In: Brebbia CA, Antunes do Carmo JS (eds) Water pollution VIII: modelling, monitoring and management. WIT Press, Southampton, p 347

    Google Scholar 

  3. Serra-Sogas N, O’Hara PD, Canessa R, Keller P, Pelot R (2008) Visualization of spatial patterns and temporal trends for aerial surveillance of illegal oil discharges in western Canadian marine waters. Mar Pollut Bull 56:815

    Article  CAS  Google Scholar 

  4. Fingas M, Brown CE (2011) Oil spill remote sensing: a review. In: Fingas M (ed) Oil spill science and technology. Gulf, New York, pp 111–169 (Chap 6)

    Chapter  Google Scholar 

  5. Fingas M, Brown CE (2005) Review of oil spill remote sensing. In: Proceedings of the 8th international conference on remote sensing for marine and coastal environments, Altarum

    Google Scholar 

  6. Hengstermann T, Robbe N (2008) Airborne oil spill remote sensing. Hydro Int 10:2008

    Google Scholar 

  7. Jha MN, Levy J, Gao Y (2008) Advances in remote sensing for oil spill disaster management: state-of-the-art sensors technology for oil spill surveillance. Sensors 8:236

    Article  CAS  Google Scholar 

  8. Fingas MF, Brown CE, Gamble L (1999) The visibility and detectability of oil slicks and oil discharges on water. Arctic Mar Oilspill Progr Tech Sem 2:865

    Google Scholar 

  9. Brown CE, Fingas MF (2009) The latest developments in remote sensing technology for oil spill detection. In: Proceedings of the Interspill 2009, Marseille

    Google Scholar 

  10. Krol T, Stelmaszewski A, Freda W (2006) Variability in the optical properties of a crude oil-seawater emulsion. Oceanologia 48:203

    Google Scholar 

  11. Evdokimov IN, Losev AP (2007) Potential of UV-visible absorption spectroscopy for characterizing crude petroleum oils. Oil Gas Bus 1

    Google Scholar 

  12. Otremba Z, Piskozub J, Król T (2003) Modelling the reflectance of sea areas polluted with oil emulsion. Fresenius Environ Bull 12(9):1109–1113

    CAS  Google Scholar 

  13. Otremba Z, Piskozub J (2001) Modelling of the optical contrast of an oil film on a sea surface. Opt Express 9(8):411–416

    Article  CAS  Google Scholar 

  14. Otremba Z, Piskozub J (2000) The modification of light flux leaving a wind-roughened, oil covered sea surface example of computations for shallow seas. Oceanol Stud 29(1):117–133

    Google Scholar 

  15. Hong SI, Shin I (2010) Nightime detection of oil spills on the sea surface using spaceborne infrared images. Korea Meteorological Administration

    Google Scholar 

  16. Ma L, Li Y, Liu Y (2009) Oil Spill monitoring based on its spectral characteristics. Environ Forensic 10:317

    Article  Google Scholar 

  17. O’Neil RA, Neville R, Thompson V (1983) The arctic marine oilspill program (AMOP) remote sensing study. Environment Canada Report EPS 4-EC-83-3, Ottawa

    Google Scholar 

  18. Brown HM, Bittner JP, Goodman RH (1996) The limits of visibility of spilled oil sheens. In: Proceedings of the second thematic international airborne remote sensing conference and exhibition, ERIM conferences, San Francisco, vol III, p 327

    Google Scholar 

  19. Taylor S (1992) 0.45 to 1.1 μm spectra of Prudhoe crude oil and of beach materials in Prince William Sound, Alaska. CRREL Special Report No. 92–5. Cold Regions Research and Engineering Laboratory, Hanover

    Google Scholar 

  20. Huang M, Yu Y, Zhang SJ, Qi X (2008) Analysis of water spectral features of petroleum pollution and estimate models from remote sensing data. SPIE 7123:712312

    Article  CAS  Google Scholar 

  21. Ahmed S, Gilerson A, Oo M, Zhou J, Chowhardy J et al (2006) The polarization properties of reflectance from coastal waters and the ocean–atmosphere system. SPIE 6360:636003

    Article  Google Scholar 

  22. Carnesecchi F, Byfield V, Cipollini P, Corsini G, Diani M (2008) An optical model for the interpretation of remotely sensed multispectral images of oil. SPIE 7105:710504

    Article  Google Scholar 

  23. Bianchi R, Cavalli RM, Marino CM, Pignatti S, Poscolieri M (1995) Use of airborne hyperspectral images to assess the spatial distribution of oil spilled during the Trecate blow-out (Northern Italy). SPIE 2585:352

    Article  Google Scholar 

  24. Bagheri S, Stein M, Zetlin C (1995) Utility of airborne videography as an oil spill-response monitoring system. In: Cheremisinoff PN (ed) Encyclopedia of environmental control technology. Gulf, Houston, p 367

    Google Scholar 

  25. Brown CE, Fingas MF, Marois R (2004) Oil spill remote sensing: laser fluorosensor demonstration flights off the east coast of Canada. Arctic Mar Oilspill Progr Tech Sem 317

    Google Scholar 

  26. Brown CE, Fingas MF, Marois R (2005) Oil spill remote sensing flights in the coastal waters around Newfoundland. In: Proceedings of the eighth international conference on remote sensing for marine and coastal environments, Altarum

    Google Scholar 

  27. Palmer D, Borstad GA, Boxall SR (1994) Airborne multi spectral remote sensing of the January 1993 Shetlands oil spill. In: Proceedings of the second thematic conference on remote sensing for marine and coastal environments: needs, solutions and applications. ERIM, Ann Arbor, vol II, p 546

    Google Scholar 

  28. Wadsworth A, Looyen WJ, Reuter R, Petit M (1992) Aircraft experiments with visible and infrared sensors. Int J Remote Sens 13:1175

    Article  Google Scholar 

  29. Wang D, Gong F, Pan D, Hao Z, Zhu Q (2010) Introduction to the airborne marine surveillance platform and its application to water quality monitoring in China. Oceanol Sin 29:33

    Article  CAS  Google Scholar 

  30. Locke C, White M, Michel J, Henry C, Sellars JD, Aslaksen ML (2008) Use of vertical digital photography at the Bayou Perot, LA, spill for oil mapping and volume estimation. In: Proceedings of the IOSC 2008, Savannah, p 127

    Google Scholar 

  31. Stelmaszewski A, Krol T, Toczek H (2009) Light scattering in Baltic crude oil – seawater emulsion. Oceanologia 51:405

    Article  Google Scholar 

  32. Hurford N (1989) Review of remote sensing technology. In: Lodge AE (ed) The remote sensing of oil slicks. Wiley, Chichester, p 7

    Google Scholar 

  33. Goodman RH (1989) Application of the technology in North America. In: Lodge AE (ed) The remote sensing of oil slicks. Wiley, Chichester, p 39

    Google Scholar 

  34. Belore RC (1982) A device for measuring oil slick thickness. Spill Tech News 7:44

    Google Scholar 

  35. Neville RA, Thompson V, Dagg K, O’Neil RA (1979) An analysis of multispectral line scanner imagery from two test spills. In: Proceedings of first workshop sponsored by working group I of the pilot study on the use of remote sensing for the control of marine pollution, NATO challenges of modern society, p 201

    Google Scholar 

  36. Bolus RL (1996) Airborne testing of a suite of remote sensors for oil spill detecting on water. In: Proceedings of the second thematic international airborne remote sensing conference and exhibition. ERIM, Ann Arbor, vol III, p 743

    Google Scholar 

  37. Salisbury JW, D’Aria DM, Sabins FF (1993) Thermal infrared remote sensing of crude oil slicks. Remote Sens Environ 45:225

    Article  Google Scholar 

  38. Hover G (1994) Testing of infrared sensors for U.S. Coast Guard oil spill response applications. In: Proceedings of the second thematic conference on remote sensing for marine and coastal environments: needs, solutions and applications. ERIM, Ann Arbor, vol I, p 47

    Google Scholar 

  39. Grierson IT (1998) Use of airborne thermal imagery to detect and monitor inshore oil spill residues during darkness hours. Environ Manage 22:905

    Article  Google Scholar 

  40. Shih W-C, Andrews AB (2008) Infrared contrast of crude-oil-covered water surfaces. Opt Lett 33:3019

    Article  Google Scholar 

  41. Brown HM, Baschuk JJ, Goodman RH (1998) The limits of visibility of spilled oil sheens. Arctic Mar Oilspill Progr Tech Sem:805

    Google Scholar 

  42. Clark RN, Swayze GA, Leifer I, Livo KE, Lundeem S et al (2010) A method for qualitative mapping of thick oil using imaging spectroscopy. United States Geological Survey. http://pubs.usgs.gov/of/2010/1101/

  43. Leifer IR, Clark RN, Swayse G, Roberts D, Kokaly R et al (2011) Imaging spectroscopy of the deepwater horizon spill: a 21st century oil spill response (in press)

    Google Scholar 

  44. Goodman RH (1988) Simple remote sensing system for the detection of oil on water. Environmental Studies Research Fund Report Number 98, Ottawa

    Google Scholar 

  45. Brown CE (2011) Laser fluorosensors. In: Fingas MF (ed) Oil spill science and technology. Gulf, Oxford, pp 171–184

    Chapter  Google Scholar 

  46. Brown CE, Fingas MF, An J (2001) Laser fluorosensors: a survey of applications and developments of a versatile sensor. Arctic Mar Oilspill Progr Tech Sem 1:485

    Google Scholar 

  47. Brown CE, Nelson R, Fingas MF, Mullin JV (1997) Airborne laser fluorosensing: overflights during lift operations of a sunken oil barge. In: Proceedings of the fourth thematic conference on remote sensing for marine and coastal environments. ERIM, Seattle, vol I, p 23

    Google Scholar 

  48. Brown CE, Marois R, Fingas MF, Choquet M, Monchalin J-P, Mullin J, Goodman R (2001) Airborne oil spill sensor testing: progress and recent developments. IOSC 2001, Tampa, p 917

    Google Scholar 

  49. Brown CE, Fingas MF (2003) Review of the development of laser fluorosensors for oil spill application. Mar Pollut Bull 47:477

    Article  CAS  Google Scholar 

  50. Hengstermann T, Reuter R (1990) Lidar fluorosensing of mineral oil spills on the sea surface. Appl Opt 29:3218

    Article  CAS  Google Scholar 

  51. Balick L, DiBenedetto JA, Lutz SS (1997) Fluorescence emission spectral measurements for the detection of oil on shore. In: Proceedings of the fourth thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, vol I, p 13

    Google Scholar 

  52. Sarma AK, Ryder AG (2006) Comparison of the fluorescence behaviour of a biocrude oil and crude petroleum oil. Energy Fuels 20:783

    Article  CAS  Google Scholar 

  53. Samberg A (2007) The state-of-the-art of airborne laser systems for oil mapping. Can J Rem Sens 53:143

    Google Scholar 

  54. Jha MN, Gao Y (2008) Oil spill contingency planning using laser fluorosensors and web-based GIS. In: Proceedings Oceans Marine Technology Society, Quebec City

    Google Scholar 

  55. Diebel D (1989) Laser fluorosensing of mineral oil spirits. In: Lodge AE (ed) The remote sensing of oil slicks. Wiley, Chichester, p 127

    Google Scholar 

  56. Geraci AL, Landolina F, Pantani L, Cecchi G (1993) Laser and infrared techniques for water pollution control. IOSC, 525

    Google Scholar 

  57. Hoge FE, Swift RN (1980) Oil film thickness measurement using airborne laser-induced water Raman backscatter. Appl Opt 19:3269

    Article  CAS  Google Scholar 

  58. Piskozub J, Drozdowska V, Varlamov V (1997) A lidar system for remote measurement of oil film thickness on sea surface. In: Proceedings of the fourth thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, vol I, p 386

    Google Scholar 

  59. Goodman R, Brown CE (2005) Oil detection limits for a number of remote sensing systems. In: Proceedings of the eighth international conference on remote sensing for marine and coastal environments, Halifax, Alterum conferences

    Google Scholar 

  60. Dick R, Fruhwirth M, Brown C (1992) Laser fluorosensor work in Canada. In: Proceedings of the first thematic conference on remote sensing for marine and coastal environments. ERIM, p 223

    Google Scholar 

  61. James RTB, Dick R (1996) Design of algorithms for the real-time airborne detection of littoral oil-spills by laser-induced fluorescence. Arctic Mar Oilspill Progr Tech Sem 2:1599

    Google Scholar 

  62. Brown CE, Fingas MF, Gamble RL, Myslicki GE (2002) The remote detection of submerged oil. In: Proceedings of the third R&D forum on high-density oil spill response, Brest France. IMO, pp 46–54

    Google Scholar 

  63. Brown CE, Marois R, Myslicki G, Fingas MF (2002) Initial studies on the remote detection of submerged orimulsion with a range-gated laser fluorosensor. AMOP, Environment Canada, Ottawa, p 773

    Google Scholar 

  64. Brown CE, Marois R, Myslicki G, Fingas MF, MacKay R (2003) Remote detection of submerged orimulsion with a range-gated laser fluorosensor. In: Proceedings of the IOSC 2003, Vancouver, p 779

    Google Scholar 

  65. Brown CE, Marois R, Gamble RL, Fingas MF (2003) Further studies on the remote detection of submerged orimulsion with a range-gated laser fluorosensor. Arctic Mar Oilspill Progr Tech Sem 1:279

    Google Scholar 

  66. Brown CE, Fingas M, Marois R, Fieldhouse B, Gamble RL (2004) Remote sensing of water-in-oil emulsions: initial laser fluorosensor studies. Arctic Mar Oilspill Progr Tech Sem 1:295

    Google Scholar 

  67. Ulaby FT, Moore RK, Fung AK (1989) Microwave remote sensing: active and passive. Artech House, Norwood, 1466

    Google Scholar 

  68. Goodman RH (1994) Remote sensing resolution and oil slick inhomogeneities. In: Proceedings of the second thematic conference on remote sensing for marine and coastal environments: needs, solutions and applications. ERIM, Ann Arbor, p I-1-17

    Google Scholar 

  69. Fäst O (1986) Remote sensing of oil on water – air and space-borne systems. In: Proceedings of the DOOS seminar, Trondheim

    Google Scholar 

  70. Skou N, Sorensen BM, Poulson A (1994) A new airborne dual frequency microwave radiometer for mapping and quantifying mineral oil on the sea surface. In: Proceedings of the second thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, p 559

    Google Scholar 

  71. Mussetto MS, Yujiri L, Dixon DP, Hauss BI, Eberhard CD (1994) Passive millimeter wave radiometric sensing of oil spills. In: Proceedings of the second thematic conference on remote sensing for marine and coastal environments: needs, solutions and applications. ERIM, Ann Arbor, vol I, p 35

    Google Scholar 

  72. Zhifu S, Wiesbeck W (1988) A study of passive microwave remote sensing. In: Proceedings of the 1988 international geoscience and remote sensing symposium, Edinburgh, p 1091

    Google Scholar 

  73. Süss H, Grüner K, Wilson WJ (1989) Passive millimeter wave imaging: a tool for remote sensing. Alta Freq LVIII:457

    Google Scholar 

  74. Pelyushenko SA (1995) Microwave radiometer system for the detection of oil slicks. Spill Sci Technol Bull 2:249

    Article  CAS  Google Scholar 

  75. Pelyushenko SA (1997) The use of microwave radiometer scanning system for detecting and identification of oil spills. In: Proceedings of the fourth thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, vol I, p 381

    Google Scholar 

  76. McMahon OB, Brown ER, Daniels GD, Murphy TJ, Hover GL (1995) Oil thickness detection using wideband radiometry. In: Proceedings of the IOSC 1995, Long Beach, CA, p 15

    Google Scholar 

  77. McMahon OB, Murphy TJ, Brown ER (1997) Remote measurement of oil spill thickness. In: Proceedings of the fourth thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, vol I, p353

    Google Scholar 

  78. Nunziata F, Migliaccio M, Sobieski P (2008) A BPM two-scale contrast model. In: Proceedings of the IGARSS, Boston, vol IV, p 593

    Google Scholar 

  79. Frysinger GS, Asher WE, Korenowski GM, Barger WR, Klusty MA, Frew NM, Nelson RK (1992) Study of ocean slicks by nonlinear laser processes in second-harmonic generation. J Geophys Res 97:5253

    Article  Google Scholar 

  80. Alpers W, Hühnerfuss H (1987) Radar signatures of oil films floating on the sea surface. In: Proceedings of the IGARSS, Ann Arbor, p 741

    Google Scholar 

  81. Poitevin J, Khaif C (1992) A numerical study of the backscattered radar power in presence of oil slicks on the sea surface. In: Proceedings of the first thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, p 171

    Google Scholar 

  82. Hühnerfuss H, Alpers W, Witte F (1989) Layers of different thicknesses in mineral oil spills detected by grey level textures of real aperture radar images. Int J Remote Sens 10:1093

    Article  Google Scholar 

  83. Gens R (2008) Oceanographic applications of SAR remote sensing. GISci Remote Sens 45:275

    Article  Google Scholar 

  84. Bartsch N, Grüner K, Keydel W, Witte F (1987) Contribution to oil spill detection and analysis with radar and microwave radiometer: results of the Archimedes II campaign. IEEE Trans Geosci Remote GE.25:677

    Article  Google Scholar 

  85. Mastin G, Mason JJ, Bradley JD, Axline RM, Hover GL (1994) A comparative evaluation of SAR and SLAR. In: Proceedings of the second thematic conference on remote sensing for marine and coastal environments: needs, solutions and applications. ERIM, Ann Arbor, vol I, p 7

    Google Scholar 

  86. Brown CE, Fingas MF (2003) Synthetic aperture radar sensors: viable for marine oil spill response? Arctic Mar Oilspill Progr Tech Sem 1:299

    Google Scholar 

  87. Zielinski O, Robbe N (2004) Past and future of airborne pollution control. In: Proceedings of the Interspill 2004, Trondheim

    Google Scholar 

  88. Dyring A, Fäst O (2004) MSS puts the aircraft in the oil spill tracking network. In: Proceedings of the Interspill 2004, Trondheim

    Google Scholar 

  89. Intera Technologies (1984) Radar surveillance in support of the 1983 COATTF oil spill trials. Environment Canada Report EE-51

    Google Scholar 

  90. C-CORE (Centre for Cold Ocean Resources Engineering) (1981) Microwave systems for detecting oil slicks in ice-infested waters: phase I – literature review and feasibility study. Environment Canada Report EPS 3-EC-81-3

    Google Scholar 

  91. Macklin JT (1992) The imaging of oil slicks by synthetic aperture radar. GEC J Res 10:19

    Google Scholar 

  92. Kozu TT, Umehara T, Ojima T, Suitsu T, Masuyko H, Inomata H (1987) Observation of oil slicks on the ocean by X-band SLAR. In: Proceedings of the IGARSS 1987, Ann Arbor, p 735

    Google Scholar 

  93. Madsen S, Skou N, Sorensen BM (1994) Comparison of VV and HH polarized SLAR for detection of oil on the sea surface. In: Proceedings of the second thematic conference on remote sensing for marine and coastal environments: needs, solutions and applications. ERIM, Ann Arbor, vol I, p 498

    Google Scholar 

  94. Migliaccio M, Nunziata F, Gambardella A (2009) On the co-polarized phase difference for oil spill observation. Int J Remote Sens 30:1587

    Article  Google Scholar 

  95. Hühnerfuss H, Alpers W, Dannhauer H, Gade M, Lange PA, Neumann V, Wismann V (1996) Natural and man-made sea slicks in the North Sea investigated by a helicopter-borne 5-frequency radar scatterometer. Int J Remote Sens 17:1567

    Article  Google Scholar 

  96. Hielm JH (1989) NIFO comparative trials. In: Lodge AE (ed) The remote sensing of oil slicks. Wiley, Chichester, p 67

    Google Scholar 

  97. Marghany M, Cracknell AP, Hasim M (2009) Modification of fractal algorithm for oil spill detection from RADARSAT-1 SAR data. Int J Appl Earth Observ Geoinform 11:96

    Article  Google Scholar 

  98. Gade M, Alpers W, Huehnerfuss H, Wismann V (1996) Radar signatures of different oceanic surface films measured during the SIR-C-X-SAR missions. In: Proceedings of the remote sensing 1996. Balkema, Rotterdam, p 233

    Google Scholar 

  99. Okamoto K, Kobayashi T, Masuko H, Ochiai S, Horie H, Kumagai H, Nakamua K, Shimada M (1996) Results of experiments using synthetic aperture radar onboard the European remote sensing satellite 1–4. Artificial oil pollution detection. J Commun Res Lab 43:327

    Google Scholar 

  100. Migliaccio M, Gambardella A, Tranfaglia A (2007) SAR polarimetry to observe oil spills. IEEE Trans Geosci Remote 45:506

    Article  Google Scholar 

  101. Gambardella A, M. Migliaccio M, De Grandi G (2007) Wavelet polarimetric SAR signature analysis of sea oil spills and look-alike features. In: Proceedings of the IGARSS 2007, Barcelona, p 983

    Google Scholar 

  102. Nunziata F, Gambardella A, Migliaccio M (2008) On the use of dual-polarized SAR data for oil spill observation. In: Proceedings of the IGARSS 2008, Boston, vol II, p 225

    Google Scholar 

  103. Forget P, Brochu P (1996) Slicks, waves and fronts observed in sea coastal area by an X-band airborne synthetic aperture radar. Remote Sens Environ 57:1

    Article  Google Scholar 

  104. Marmorino GO, Thompson DR, Graber HC, Trump CL (1997) Correlation of oceanographic signatures appearing in synthetic aperature radar and interferometric synthetic aperture radar imagery with in-situ measurements. J Geophys Res 18:723

    Google Scholar 

  105. Nøst E, Egset CN (2006) Oil spill detection system – results from field trials. In: Proceedings oceans marine technology society

    Google Scholar 

  106. Gangeskar R (2004) Automatic oil-spill detection by marine X-band radars. Sea Technol 45:40–45

    Google Scholar 

  107. Topouzelis K, Karanthanassi V, Pavlakis VP, Rokos D (2009) Potentiality of feed-forward neural networks for classifying dark formation to oil spills and look-alikes. Geocarto Int 24:179

    Article  Google Scholar 

  108. Solberg R, Theophilopoulos N (1997) ENVISYS – a solution for automatic oil spill detection in the Mediterranean. In: Proceedings of the fourth thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, vol I, p 3

    Google Scholar 

  109. Ferraro G, Baschek B, de Montpellier G, Njoten O, Perkovic M, Vespe M (2010) On the SAR derived alert in the detection of oil spills according to the analysis of the EGEMP. Mar Pollut Bull 60:91

    Article  CAS  Google Scholar 

  110. Wahl T, Eldhuset K, Skøelv Å (1993) Ship traffic monitoring and oil spill detection using ERS-1. In: Proceedings of the international symposium “operationalization of remote sensing”, ITC, Enschede, p 97

    Google Scholar 

  111. Bern T-I, Wahl T, Anderssen T, Olsen R (1993) Oil spill detection using satellite based SAR: experience from a field experiment. Photogramm Eng Remote Sens 59:423

    Google Scholar 

  112. Yan X-H, Clemente-Colon P (1997) The maximum similarity share matching (MSSM) method applied to oil spill feature tracking observed in SAR imagery. In: Proceedings of the fourth thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, vol I, p 43

    Google Scholar 

  113. Bentz CM, Politano AT, Ebecken NFF (2007) Automatic recognition of coastal and oceanic environmental events with orbital radars. In: Proceedings of the IGARSS 2007, Barcelona, p 914

    Google Scholar 

  114. Trivero P, Biamino W, Nirchio F (2007) High resolution COSMO-SkyMed SAR images for oil spills automatic detection. In: Proceedings of the IGARSS 2007, Barcelona, p 2

    Google Scholar 

  115. Tian W, Shao Y, Wang S (2008) A system for automatic identification of oil spill in ENVISAT ASAR. In: Proceedings of the IGARSS 2008, Boston, vol III, p 1394

    Google Scholar 

  116. Shao Y, Tian W, Wang S, Zhang F (2008) Oil spill monitoring using multi-temporal SAR and microwave scatterometer data. In: Proceedings of the IGARSS 2008, Boston, vol III, p 1378

    Google Scholar 

  117. Rodriguez MH, Bannerman K, Caceres RG, Pellon de Miranda F, Pedroso EC (2007) Cantarell natural seep modelling using SAR derived ocean surface wind and meteo-oceanographic buoy data. In: Proceedings of the IGARSS 2007, Barcelona, p 3257

    Google Scholar 

  118. Robson M, Secker J, Vachon PW (2006) Evaluation of eCognition for assisted target detection and recognition in SAR imagery. In: Proceedings of the IGARSS 2006, Denver, p 145

    Google Scholar 

  119. Garcia-Pineda O, MacDonald I, Zimmer B (2008) Synthetic aperture radar image processing using the supervised textural-neural network classification algorithms. In: Proceedings of the IGARSS, Boston, vol IV, p 1265

    Google Scholar 

  120. Morales DJ, Moctezuma M, Parmiggiani F (2008) Detection of oil slicks in SAR images using hierarchial MRF. In: Proceedings of the IGARSS, Boston, vol III, p 1390

    Google Scholar 

  121. Bertacca M (2006) A FEXP model short range dependence analysis for improving oil slicks and low-wind areas discrimination in SAR imagery. In: Proceedings of the IGARSS, Denver, p 959

    Google Scholar 

  122. Topouzelis KN (2008) Oil spill detection by SAR images: dark formation detection, feature extraction and classification algorithms. Sensors 8:6642

    Article  Google Scholar 

  123. Topouzelis K, Karanthanassi V, Pavlakis P, Rokos D (2008) Dark formation detection using neural networks. Int J Remote Sens 29:4705

    Article  Google Scholar 

  124. Topouzelis K, Stathakis D, Karanthanassi V (2009) Investigation of genetic contribution to feature selection for oil spill detection. Int J Remote Sens 30:179

    Article  Google Scholar 

  125. Karathanassi V, Topouzelis K, Pavlakis P, Rokos D (2006) An object-oriented methodology to detect oil spills. Int J Remote Sens 27:5235

    Article  Google Scholar 

  126. Topouzelis K, Karanthanassi V, Pavlakis P, Rokos D (2007) Detection and discrimination between oil spills and look-alike phenomena through neural networks. ISPRS J Photogramm Remote Sens 62:264

    Article  Google Scholar 

  127. Karantzalos K, Argialas D (2008) Automatic detection and tracking of oil spills in SAR imagery with level set segmentation. Int J Remote Sens 29:6281

    Article  Google Scholar 

  128. Tahvonen K, Pyhaelahti T (2006) The use of environmental data in reliability: assessment of oil spill detection by SAR imagery. In: Proceedings of the IGARSS 2006, Denver, p 3671

    Google Scholar 

  129. Karvonen J, Heiler I, Similae M, Tahvonen K (2006) Oil spill detection with RADARSAT-1 in the Baltic Sea. In: Proceedings of the IGARSS 2006, Denver, p 4075

    Google Scholar 

  130. Shi L, Ivanov AY, He M, Zhao C (2008) Oil spill mapping in the western part of the East China Sea using synthetic aperture radar imagery. Int J Remote Sens 29:6315

    Article  Google Scholar 

  131. Muellenhoff O, Bulgarelli B, Ferraro G, Topouzelis K (2008) The use of ancillary metocean data for the oil spill probability assessment in SAR images. Fresenius Environ Bull 17:1382

    Google Scholar 

  132. Muellenhoff O, Bulgarelli B, Ferraro G, Perkovic M, Topouzelis K, Sammarini V (2008) Geospatial modelling of metocean and environmental ancillary data for the oil probability assessment in SAR images. Proc SPIE 7110:71100R

    Article  Google Scholar 

  133. Assilzadeh H, Gao Y (2008) Oil spill emergency response mapping for coastal area using SAR imagery and GIS. In: Proceedings oceans marine technology society

    Google Scholar 

  134. Migliaccio M (2005) A physical approach for the observation of oil spills in SAR images. IEEE J Oceanic Eng 30:496

    Article  Google Scholar 

  135. Shu Y, Li J, Yousef H, Gomes G (2010) Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill monitoring. Remote Sens Environ 114:2026

    Article  Google Scholar 

  136. Migliaccio M, Ferrara G, Gambardella A, Nunziata F, Sorrentino A (2007) A physically consistent stochastic model to observe oil spills and strong scatterers on SLC SAR images. In: Proceedings of the IGARSS 2007, Barcelona, p 1322

    Google Scholar 

  137. Gambardella A, Giacinto G, Migliaccio M (2008) On the mathematical formulation of the SAR oil-spill observation problem. In: Proceedings of the IGARSS 2008, Boston, vol III, p 1382

    Google Scholar 

  138. Marghany M, Cracknell AP, Hasim M (2009) Comparison between RADARSAT-1 SAR different data modes for oil spill detection by a fractal box counting algorithm. Int J Dig Earth 2:237

    Article  Google Scholar 

  139. Danisi A, Di Martino G, Iodice A, Riccio D, Ruello G et al (2007) SAR simulation of ocean scenes covered by oil slicks with arbitrary shapes. In: Proceedings of the IGARSS 2007, Barcelona, p 1314

    Google Scholar 

  140. Zhang F, Shao Y, Tian W, Wang S (2008) Oil spill identification based on textural information of SAR images. In: Proceedings of the IGARSS 2008, Boston, vol IV, p 1308

    Google Scholar 

  141. Tello M, Bonastre R, Lopez-Martinez C, Mallorqui JJ, Danisi A (2007) Characterization of local regularity in SAR imagery by means of multiscale techniques: application to oil spill detection. In: Proceedings of the IGARSS 2007, Barcelona, p 5228

    Google Scholar 

  142. Lounis B, Mercier G, Belhadj-Aissa A (2008) Statistical similarity measure for oil slick detection in SAR images. In: Proceedings of the IGARSS 2008, Boston, vol I, p 233

    Google Scholar 

  143. Pelizzari S, Bioucas-Dias J (2007) Oil spill segmentation of SAR images via graph cuts. In: Proceedings of the IGARSS 2007, Barcelona, p 1318

    Google Scholar 

  144. Ferraro G, Bernardini A, David M, Meyer-Roux S, Muellenhoff O et al (2007) Towards an operational use of space imagery for oil pollution monitoring in the Mediterranean basin: a demonstration in the Adriatic Sea. Mar Pollut Bull 54:403

    Article  CAS  Google Scholar 

  145. Ferraro G, Meyer-Roux S, Muellenhoff O, Pavilha M, Svetak J, Tarchi D, Topouzelis K (2009) Long-term monitoring of oil spills in European seas. Int J Remote Sens 30:627

    Article  Google Scholar 

  146. Ferraro G, Baschek B, De Monpellier G, Njoten O, Perkovic M (2010) On the SAR derived alert in the detection of oil spills according to the analysis of the EGEMP. Mar Pollut Bull 60:91–102

    Article  CAS  Google Scholar 

  147. Adamo M, De Carolis G, De Pasquale V, Pasquariello G (2006) On the combined use of sun glint MODIS and MERIS signatures and SAR data to detect oil slicks. Proc SPIE 6360:63600G

    Article  Google Scholar 

  148. Sipelgas L, Uiboupin R (2007) Elimination of oil spill like structures from radar image using MODIS data. In: Proceedings of the IGARSS 2007, Barcelona, p 429

    Google Scholar 

  149. Vesecky JF, Laws K, Paduan JD (2008) Monitoring of coastal vessels using surface wave HF radars: Multiple frequency, multiple site and multiple antenna considerations. In: Proceedings of the IGARSS 2008, Boston, vol I, p 405

    Google Scholar 

  150. Pinel N, Bourlier C (2008) Forward propagation of thick oil spills on sea surface for a coastal coherent radar. In: Proceedings of the IGARSS 2008, Boston, vol IV, p 1125

    Google Scholar 

  151. Demarty Y, Gobin V, Thirion L, Guinvarc’h R, Lesturgie M (2007) Exact electromagnetic modeling of the scattering of realistic sea surfaces for HFSWR applications. In: Proceedings of the IGARSS 2007, Barcelona, p 1004

    Google Scholar 

  152. Schultz-Stellenfleth J, Lehner S, Koenig T, Reppucci A, Brusch S (2007) Use of tandem pairs of ERS-2 and ENVIRSAT SAR data for the analysis of oceanographic and atmospheric processes. IGARSS 2007, Barcelona, p 3265

    Google Scholar 

  153. Goodman RH, Fingas MF (1988) The use of remote sensing for the determination of dispersant effectiveness. Arctic Mar Oilspill Progr Tech Sem 1:377

    Google Scholar 

  154. Jensen HV, Andersen JHS, Daling PS, Noest E (2008) Recent experience from multiple remote sensing and monitoring to improve oil spill response operations. In: Proceedings of the IOSC 2008, Savannah, p 407

    Google Scholar 

  155. Hollinger JP, Mennella RA (1973) Oil spills: measurements of their distributions and volumes by multifrequency microwave radiometry. Science 181:54

    Article  CAS  Google Scholar 

  156. Lehr WJ (2010) Visual observations and the Bonn agreement. Arctic Mar Oilspill Progr Tech Sem 2:669

    Google Scholar 

  157. Horstein B (1973) The visibility of oil–water discharges. In: Proceedings of the IOSC 1973, Washington, DC, pp 91–99

    Google Scholar 

  158. Parker HD, Cormack D (1979) Evaluation of infrared line scan (IRLS) and side-looking airborne radar (SLAR) over controlled oil spills in the North Sea. Warren Spring Laboratory Report, Stevenage

    Google Scholar 

  159. Hurford N, Martinelli FN (1982) Use of an infrared line scanner and a side-looking airborne radar to detect oil discharges from ships. Warren Spring Laboratory Report, Stevenage

    Google Scholar 

  160. Hurford N, Martinelli FN (1984) Use of an infrared line scanner and a side-looking airborne radar to detect oil discharges from ships. In: Massin JM (ed) Remote sensing for the control of marine pollution. Plenum Press, New York, p 405

    Chapter  Google Scholar 

  161. MacDonald IR, Guinasso NL Jr, Ackleson SG, Amos JF, Duckworth R, Sassen R, Brooks JM (1993) Natural oil slicks in the Gulf of Mexico visible from space. J Geophys Res 16:351

    Google Scholar 

  162. Brown HM, Bittner JP, Goodman RH (1995) Visibility limits of spilled oil sheens. Imperial Oil Internal Report, Calgary

    Google Scholar 

  163. Brown CE, Fingas MF, Monchalin J-P, Neron C, Padioleau C (2006) Airborne measurement of oil slick thickness. Arctic Mar Oilspill Progr Tech Sem 1:911

    Google Scholar 

  164. Reimer ER, Rossiter JR (1987) Measurement of oil thickness on water from aircraft; A: Active microwave spectroscopy; B: Electromagnetic thermoelastic emission. Environmental Studies Revolving Fund Report Number 078

    Google Scholar 

  165. Goodman R, Brown H, Bittner J (1997) The measurement of thickness of oil on water. In: Proceedings of the fourth thematic conference on remote sensing for marine and coastal environments, ERIM, Ann Arbor, vol I, p 31

    Google Scholar 

  166. Aussel JD, Monchalin J-P (1989) Laser-ultrasonic measurement of oil thickness on water from aircraft, feasibility study. Industrial Materials Research Institute Report, Québec

    Google Scholar 

  167. Krapez JC, Cielo P (1992) Optothermal evaluation of oil film thickness. J Appl Phys 72:1255

    Article  CAS  Google Scholar 

  168. Choquet M, Héon R, Vaudreuil G, Monchalin J-P, Padioleau C, Goodman RH (1993) Remote thickness measurement of oil slicks on water by laser ultrasonics. IOSC, Boucherville

    Google Scholar 

  169. Brown CE, Fingas MF, Choquet M, Blouin A, Drolet D, Monchalin J-P, Hardwick CD (1997) The LURSOT sensor: providing absolute measurements of oil slick thickness. In: Proceedings of the fourth thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, vol I, p 393

    Google Scholar 

  170. Brown CE, Fingas MF (2003) Development of airborne oil thickness measurements. Mar Pollut Bull 47:485

    Article  CAS  Google Scholar 

  171. Brown CE, Fingas MF, Monchalin J-P, Neron C, Padioleau C (2005) Airborne oil slick thickness measurements: realization of a dream. In: Proceedings of the eighth international conference on remote sensing for marine and coastal environments, Altarum

    Google Scholar 

  172. Monchalin JP (1986) Optical detection of ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 33:485

    Article  CAS  Google Scholar 

  173. Svejkovsky J, Muskat J, Mullin J (2008) Mapping oil spill thickness with a portable multispectral aerial imager. In: Proceedings of the IOSC 2008, Savannah, p 131

    Google Scholar 

  174. Lue L, Ge B, Yao W, Zhang Y (2011) A method for measuring the thickness of transparent oil film on water surface using laser trigonometry. Opt Lasers Eng 49:13

    Article  Google Scholar 

  175. Lu Y-C, Tian Q-J, Li Z (2011) The remote sensing inversion theory of offshore oil slick thickness based on a two-beam interference model. Sci China Earth Sci 54:4154

    Google Scholar 

  176. Optimare (2011) http://www.optimare.de/cms/en/divisions/fek.html. Accessed June 2011

  177. Swedish Space Corporation (2011) http://www.ssc.se/?id=5772. Accessed June 2011

  178. Armstrong L, Fäst O, Schneider HA, Abrahamsson AH (2008) Integration of airborne AIS brings a new dimension to the detection of illegal discharge of oil spills. In: Proceedings of the IOSC 2008, Savannah, p 179

    Google Scholar 

  179. Brown CE, Fingas MF (2005) A review of current global oil spill surveillance, monitoring and remote sensing capabilities. Arctic Mar Oilspill Progr Tech Sem 2:789

    Google Scholar 

  180. Dean KG, Stringer WJ, Groves JE, Ahlinas K, Royer TC (1990) The EXXON VALDEZ oil spill: satellite analyses. In: Spaulding ML, Reed M (eds) Oil spills: management and legislative implications. ASCE, New York, p 492

    Google Scholar 

  181. Dawe BR, Parashar SK, Ryan TP, Worsfold RO (1981) The use of satellite imagery for tracking the KURDISTAN oil spill. Environment Canada Report EPS 4-EC-81-6, Ottawa

    Google Scholar 

  182. Alfoldi TT, Prout NA (1982) The use of satellite data for monitoring oil spills in Canada. Environment Canada Report EPS 3-EC-82-5, Ottawa

    Google Scholar 

  183. Cross A (1992) Monitoring marine oil pollution using AVHRR data: observations off the coast of Kuwait and Saudi Arabia during January 1991. Int J Remote Sens 13:781

    Article  Google Scholar 

  184. Rand RS, Davis DA, Satterwhite MB, Anderson JE (1992) Methods of monitoring the Persian Gulf oil spill using digital and hardcopy multiband data. U.S. Army Corps of Engineers Report, TEC-0014

    Google Scholar 

  185. Al-Ghunaim I, Abuzar M, Al-Qurnas FS (1992) Delineation and monitoring of oil spill in the Arabian Gulf using landsat thematic mapper (TM) data. In: Proceedings of the Proceedings of the first thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, p 1151

    Google Scholar 

  186. Al-Hinai KG, Khan MA, Dabbagh AE, Bader TA (1993) Analysis of landsat thematic mapper data for mapping oil slick concentrations – Arabian Gulf oil spill 1991. Arabian J Sci Eng 18:85

    CAS  Google Scholar 

  187. Cecamore P, Ciappa A, Perusini V (1992) Monitoring the oil spill following the wreck of the tanker HAVEN in the Gulf of Genoa through satellite remote sensing techniques. In: Proceedings of the first thematic conference on remote sensing for marine and coastal environments. ERIM, Ann Arbor, p 183

    Google Scholar 

  188. Voloshina IP, Sochnev OY (1992) Observations of surface contamination of the region of the Kol’shii Gulf from IR measurements. Sov J Remote Sens 9:996

    Google Scholar 

  189. Li Y, Yu S, Ma L, Liu M, Li Q (2008) Satellite image processing and analyzing for marine oil spills. Proc SPIE 7145:712311

    Article  CAS  Google Scholar 

  190. Alawadi F, Amos C, Byfield V, Petrov P (2008) The application of hyperspectral image techniques on Modis data for the detection of oil spills in the RSA. Proc SPIE 7110:71100Q

    Article  Google Scholar 

  191. Lotliker A, Mupparthy R, Kumer S, Nayak S (2008) Evaluation of hi-resolution MODIS-Aqua data for oil spill monitoring. Proc SPIE 7150:71500S

    Article  Google Scholar 

  192. Clark CD (1989) Satellite remote sensing for marine pollution investigations. Mar Pollut Bull 20:92

    Google Scholar 

  193. Noerager JA, Goodman RH (1991) Oil tracking, containment and recovery during the EXXON VALDEZ response. In: Proceedings of the IOSC, Washington, DC, p 193

    Google Scholar 

  194. Li Y, Liu Y, Ma L, Li X (2007) Oil spill monitoring using MODIS data. Proc SPIE 6795:67955G

    Article  Google Scholar 

  195. Li Y, Ma L, Yu S, Li C, Li Q (2008) Remote sensing of marine oil spills and its applications. SPIE :71450 C712311

    Google Scholar 

  196. Shrivastava H, Singh TP (2010) Assessment and development of algorithms to detection of oil spills using MODIS data. J Indian Soc Remote Sens 38:161

    Article  Google Scholar 

  197. Leifer I, Lehr B, Simecek-Beatty D, Bradley E, Clark R, Dennison P, Hu Y, Matheson S, Jones C, Holt B, Roberts D, Svejkovsky J, Swayse G (2011) State of the art satellite and airborne oil spill remote sensing: application to the BP deepwater horizon oil spill. Remote Sens Environ (submitted)

    Google Scholar 

  198. Li X, Ge L, Hu Z, Chang H-C (2010) The 2009 Montara oil spill in the Timor sea as observed by earth observation satellites. University of New South Wales, Australia

    Google Scholar 

  199. Chust G, Sagarminaga Y (2007) The multi-angle view of MISR detects oil slicks under sun glitter conditions. Remote Sens Environ 107:232

    Article  Google Scholar 

  200. ud Din S, Al Dousari A, Literathy P (2008) Evidence of hydrocarbon contamination from the Burgan oil field, Kuwait – interpretations from thermal remote sensing data. J Environ Manage 86:605

    Article  CAS  Google Scholar 

  201. Casciello D, Lacava T, Pergola N, Tramutoli V (2007) Robust satellite techniques (RST) for oil spill detection and monitoring. In: Proceedings of the MultiTemp 2007–2007 international workshop on the analysis of multi-temporal remote sensing images, Leuven

    Google Scholar 

  202. Brown CE, Fingas MF (2001) New space-borne sensors for oil spill response. In: Proceedings of the IOSC 2001, Tampa, p 911

    Google Scholar 

  203. Brown CE, Fingas MF (2001) Upcoming satellites: potential applicability to oil spill remote sensing. Arctic Mar Oilspill Progr Tech Sem 2:495

    Google Scholar 

  204. Brown CE, Fingas MF, Lukowski TJ (2002) Airborne and space-borne synergies: the old dog teaches tricks to a new bird. In: Proceedings of the fifth international airborne remote sensing conference and exhibition, Veridien

    Google Scholar 

  205. Biegert EK, Baker RN, Berry JL, Mott S, Scantland S (1997) Gulf offshore satellite applications project detects oil slicks using RADARSAT. In: International symposium: geomatics in the era of RADARSAT, Ottawa

    Google Scholar 

  206. Werle D, Tittley B, Theriault E, Whitehouse B (1997) Using RADARSAT-1 SAR imagery to monitor the recovery of the Irving Whale oil barge. In: Proceedings of international symposium: geomatics in the era of RADARSAT, Ottawa

    Google Scholar 

  207. Kwarteng AY, Singhroy V, Saint-Jean R, Al-Ajmi D (1997) RADARSAT SAR data assessment of the oil lakes in the greater Burgan oil field, Kuwait. In: Proceedings of international symposium: geomatics in the era of RADARSAT, Ottawa

    Google Scholar 

  208. Ivanov AY, Ermoshkin IS (2004) Mapping of oil spills in the Caspian Sea using the ERS-1.ERS-2 SAR image quick-looks and GIS. In: Proceedings of the Interspill 2004, Trondheim

    Google Scholar 

  209. Fortuny J, Tarchi D, Ferraro G, Sieber A (2004) The use of satellite radar imagery in the Prestige accident. Interspill 2004, Trondheim

    Google Scholar 

  210. Torres Palenzuela JM, Vilas LG, Cuadrado MS (2006) Use of ASAR images to study the evolution of the Prestige oil spill off the Galician coast. Int J Remote Sens 27:1931

    Article  Google Scholar 

  211. Gauthier M-F, Weir L, Ou Z, Arkett M, De Abreu R (2007) Integrated satellite tracking of pollution: a new operational program. In: Proceedings of the IGARSS 2007, Barcelona, p 967

    Google Scholar 

  212. Brekke C, Solberg AHS (2005) Oil spill detection by satellite remote sensing. Remote Sens Environ 95:1

    Article  Google Scholar 

  213. Olga L, Marina M, Tatiana B, Andrey K, Vladimir K (2008) Multisensor approach to operational oil pollution monitoring in coastal zones. In: Proceedings of the IGARSS 2008, Boston, vol III, p 1386

    Google Scholar 

  214. Kostianoy A, Lavrova O, Mityagina M, Bocharova T, Litovchenko K et al (2007) Complex monitoring of oil pollution in the Baltic, Black and Caspian Seas. In: Proceedings of the Envisat symposium, Montreux, p 23

    Google Scholar 

  215. DeAbreu R, Gauthier M-F, Wychen W (2006) SAR-based oil pollution surveillance in Canada: operational implementation and research priorities. In: Proceedings OceanSAR 2006 – third workshop on coastal and marine applications of SAR, St. John’s

    Google Scholar 

  216. Fingas MF, Brown CE (2002) Detection of oil in and under ice. Arctic Mar Oilspill Progr Tech Sem 2:199–214

    Google Scholar 

  217. Redman R, Pfeifer C, Brzozowski E, Markian R (2008) A comparison of methods for locating, tracking and quantifying submerged oil used during the T/B DBL 152 incident. In: Proceedings of the IOSC 2008, Savannah, p 255

    Google Scholar 

  218. Wendelboe G, Fonseca ELM, Hvidbak F, Mutschler M (2009) Detection of heavy oil on the seabed by application of a 400 kHz multibeam echo sounder. Arctic Mar Oilspill Progr Tech Sem 2:791

    Google Scholar 

  219. Hansen KA (2010) Research efforts for detection and recovery of submerged oil. Arctic Mar Oilspill Progr Tech Sem 2:1055

    Google Scholar 

  220. Michel J (2008) Spills of nonfloating oil: evaluation of response technologies. In: Proceedings of the IOSC 2008, Savannah, p 261

    Google Scholar 

  221. Pfeifer C, Brzozowski E, Markian R, Redman R (2008) Quantifying percent cover of submerged oil using underwater video imagery. In: Proceedings of the IOSC 2008, Savannah, p 269

    Google Scholar 

  222. Pfeifer C, Brzozowski E, Markian R, Redman R (2008) Long-Term monitoring of submerged oil in the Gulf of Mexico following the T/B DBL 152 incident. In: Proceedings of the IOSC 2008, Savannah, p 275

    Google Scholar 

  223. Camilli R, Bingham B, Reddy CM, Nelson RK, Duryea AN (2009) Method for rapid localization of seafloor petroleum contamination using concurrent mass spectrometry and acoustic positioning. Mar Pollut Bull 58:1505

    Article  CAS  Google Scholar 

  224. Lehr WJ (2008) The potential use of small UAS in spill response. In: Proceedings of the IOSC 2008, Savannah, p 431

    Google Scholar 

  225. Donnay E (2009) Use of unmanned aerial vehicle (UAV) for the detection and surveillance of marine oil spills in the Belgian part of the North Sea. Arctic Mar Oilspill Progr Tech Sem 2:771

    Google Scholar 

  226. Li K, Fingas MF, Paré JRP, Boileau P, Beaudry, P Dainty E (1994) The use of remote-controlled helicopters for air sampling in an emergency response situation. Arctic Mar Oilspill Progr Tech Sem 2:139

    Google Scholar 

  227. Goodman RH (1994) Overview and future trends in oil spill remote sensing. Spill Sci Technol 1:11

    Article  CAS  Google Scholar 

  228. Huisman J (2006) Use of surveillance technology to support response decision making and impact assessment. In: Proceedings of the Interspill 2006, London

    Google Scholar 

  229. Carpenter A (2007) The Bonn agreement aerial surveillance programme: trends in North Sea oil pollution: 1986–2004. Mar Pollut Bull 54:149

    Article  CAS  Google Scholar 

  230. De Dominicis M, Pinardi N, Coppini G, Tonani M, Guarnieri A et al (2009) Interspill

    Google Scholar 

  231. Allen J, Walsh B (2008) Enhanced oil spill surveillance, detection and monitoring through the applied technology of unmanned air systems. In: Proceedings of the IOSC 2008, Savannah, p 113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mervin Fingas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Fingas, M., Brown, C. (2012). Oil Spill Remote Sensing . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_732

Download citation

Publish with us

Policies and ethics