Skip to main content

Definition of the Subject and Its Importance

Electricity generation based on renewable energy is of utmost importance to replace power generation using fossil fuels, as the latter is damaging the environment and exhaustible [1, 2]. Solar energy as a resource is abundant. Several technological options exist to utilize solar radiation. Solar Updraft Towers (SUTs) are one of them. They work on a simple well-known principle: Hot air rises. To make use of this simple physical fact for power generation, air is heated by the sun under a large translucent roof (greenhouse effect ). The heated air is then sucked in by a central vertical cylindrical tube (chimney effect ). The updraft wind, thus created, drives turbines with generators and so generates electricity. The principle has been proven by building and successfully operating a prototype in Spain for 7 years.

Introduction

Current electricity production from coal, oil, and natural gas is damaging the environment; it is nonsustainable, and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Greenhouse:

Large translucent solar collector roof under which air is heated by solar radiation.

Solar updraft tower (SUT):

Solar Power Plant where ambient air is heated in a greenhouse and rises in a centrally installed tower tube. This convective flow drives one or more turbines to generate electricity.

Solar energy utilization:

Conversion of the electromagnetic radiation from the sun into usable energy, mostly heat, electricity, or chemically stored energy.

Levelized electricity cost (LEC):

LEC is an economic assessment of the cost of an energy-generating system including all the costs over its lifetime: initial investment, operations and maintenance, cost of fuel, and cost of capital. The LEC is the minimum price at which energy must be sold for an energy project to break even.

Bibliography

Primary Literature

  1. Kaltschmitt M, Wiese A, Streicher W (eds) (2008) Renewable energy. Springer, Berlin

    Google Scholar 

  2. Weinrebe G (1999) Greenhouse gas mitigation with solar thermal power plants. In: Proceedings of the powergen Europe 1999 conference. Frankfurt, 1–3 June 1999

    Google Scholar 

  3. Schlaich J, Schiel W, Friedrich K, Schwarz G, Wehowsky P, Meinecke W, Kiera M (1990) Abschlußbericht Aufwindkraftwerk, Übertragbarkeit der Ergebnisse von Manzanares auf größere Anlagen. BMFT-Förderkennzeichen 0324249D, Stuttgart

    Google Scholar 

  4. Schlaich J, Bergermann R, Schiel W, Weinrebe G (2005) Design of commercial solar updraft tower systems,–utilization of solar induced convective flows. Stuttgart

    Google Scholar 

  5. Günther H (1931) In hundert Jahren – Die künftige Energieversorgung der Welt. Kosmos, Gesellschaft der Naturfreunde, Franckh’sche Verlagshandlung, Stuttgart

    Google Scholar 

  6. Haaf W, Friedrich K, Mayr G, Schlaich J (1983) Solar chimneys, part I: principle and construction of the pilot plant in Manzanares. Sol Energy 2:3–20

    Article  Google Scholar 

  7. Haaf W (1984) Solar towers, part II: preliminary test results from the Manzanares pilot plant. Sol Energy 2:141–161

    Article  Google Scholar 

  8. Schlaich J (1995) The solar chimney. Axel Menges, Stuttgart

    Google Scholar 

  9. Schlaich J et al (2004) Aufwindkraftwerke zur solaren Stromerzeugung, erschwinglich – unerschöpflich – global. Bauwerk, Berlin

    Google Scholar 

  10. Gannon AJ, Backström TW (2000) Solar chimney cycle analysis with system loss and solar collector performance. J Sol Energy Eng 122(3):133–137

    Article  Google Scholar 

  11. Gannon AJ, von Backström TW (2000) Thermal and technical analyses of solar chimneys. In: Pacheco JE, Thornbloom MD (eds) Proceedings of solar 2000. ASME, New York

    Google Scholar 

  12. Dos Santos Bernardes MA, Voß A, Weinrebe G (2003) Thermal and technical analyses of solar chimneys. Sol Energy 75:511–524

    Article  Google Scholar 

  13. Kreetz H (1997) Theoretische Untersuchungen und Auslegung eines temporären Wasserspeichers für das Aufwindkraftwerk. Diploma thesis, Technical University Berlin, Berlin

    Google Scholar 

  14. Unger J (1988) Konvektionsströmungen. Teubner, Stuttgart

    Book  Google Scholar 

  15. Davenport AG (1961) The application of statistical concepts to the wind loading of structures. In: Proceedings of the institution of civil engineers, London, vol 19, May–August 1961, paper no. 6480, pp 449–472

    Google Scholar 

  16. Davenport AG (1967) Gust loading factors. J Struct Div, ASCE 93(ST3):11–35

    Google Scholar 

  17. Niemann H-J (1993) Windwirkung auf hohe Schalenkühltürme. In Bautechnik bei Wärmekraftwerken, 1st edn, vol 9 of the series “Kraftwerkstechnik.” Verlag VGB-Kraftwerkstechnik GmbH, Essen, pp 248–305

    Google Scholar 

  18. Niemann H-J, Zerna W (1986) Impact of research on development of large cooling towers. Eng Struct 8:74–86

    Article  Google Scholar 

  19. Harris RI, Deaves DM (1980) The structure of strong winds. In: Proceedings of the CIRIA conference held on 12–13 Nov 1980. Construction Industry Research and Information Association, London, pp 4/1–4/93

    Google Scholar 

  20. von Backström TW, Gannon AJ (2003) Solar chimney turbine characteristics. Sol Energy 76(1–3):235–241

    Google Scholar 

  21. Weinrebe G (2000) Solar chimney simulation. In: Proceedings of the IEA Solarpaces task III simulation of solar thermal power systems workshop, 28–29 Sept 2000, Cologne

    Google Scholar 

  22. Duffie JA, Beckman WA (1991) Solar engineering of thermal processes, 2nd edn. Wiley Interscience, New York

    Google Scholar 

  23. Baehr HD (1998) Wärme- und Stoffübertragung, 3rd edn. Springer, Berlin

    Google Scholar 

  24. Verein Deutscher Ingenieure (1998) VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC): “VDI-Wärmeatlas”. Springer, Berlin

    Google Scholar 

  25. Ruprecht A et al (2003) Strömungstechnische Gestaltung eines Aufwindkraftwerks (Fluid dynamic design of a solar updraft power plant). In: Proceedings of the Internationales symposium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen. Bauhaus-University Weimar, Germany, 10–12 June 2003

    Google Scholar 

Books and Reviews

  • Von Backström TW, Gannon AJ (2000) Compressible flow through tall chimneys. In: Proceedings of solar 2000: solar powers life, share the energy. Madison, Wisconsin, USA June 2000

    Google Scholar 

  • Berdahl P, Martin M (1984) Emissivity of clear skies. Sol Energy 32(5):663–664

    Article  Google Scholar 

  • Bernardes MAdS, Valle RM, Cortez MF-B (1999) Numerical analysis of natural laminar convection in a radial solar heater. Int J Therm Sci 38:42–50

    Article  CAS  Google Scholar 

  • Castillo MA (1984) A new solar chimney design to harness energy from the atmosphere. In: Nagai M, Heiniger AJ (eds) Spirit of enterprise: the 1984 Rolex Awards. Aurum Press, London, pp 58–59

    Google Scholar 

  • Churchill SW (1977) Comprehensive correlating equations for heat, mass and momentum transfer in fully developed flow in smooth tubes. Ind Eng Chem/Fundam 16(1):109–116

    Article  CAS  Google Scholar 

  • Churchill SW, Chu HHS (1975) Correlating equations for laminar and turbulent free convection from a vertical plate. Int J Heat Mass Transf 18:1323–1329

    Article  CAS  Google Scholar 

  • Colebrook CF (1939) Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipes law. J Inst Civil Eng 11:133–156

    Google Scholar 

  • Mullet LB (1987) The solar chimney overall efficiency, design and performance. Int J Ambient Energy 8(1):35–40

    Article  Google Scholar 

  • Padki MM, Sherif SA (1989a) Solar chimney for medium-to-large scale power generation. In: Proceedings of the manila international symposium on the development and management of energy resources, vol 1. Manila, pp 432–437

    Google Scholar 

  • Padki MM, Sherif SA (1989b) A mathematical model for solar chimneys. Seminar on energy conservation and generation through renewable resources. Ranchi, pp. 91–96

    Google Scholar 

  • Pasumarthi N, Sherif SA (1997) Performance of a demonstration solar chimney model for power generation. In: Reardon FH, Ngo TD (eds) Proceedings of the 35th Heat Transfer and Fluid Mechanics Institute. California State University at Sacramento, School of Engineering and Computer Science, Sacramento, California, pp 203–240

    Google Scholar 

  • Petukhov BS, Popov NV (1963) Theoretical calculation of heat transfer and frictional resistance in turbulent flow in tubes of an incompressible fluid with variable physical properties. High Temp 1:69–83

    Google Scholar 

  • Schlaich J, Bergermann R, Schiel W, Weinrebe G (2003) Multi-megawatt updraft solar tower systems. In: ISES solar world congress, Göteborg, 16–19 June 2003

    Google Scholar 

  • Schlichting H, Gersten K, Krause E, Mayes K, Oertel H (1999) Boundary-layer theory. Springer, Berlin

    Google Scholar 

  • Yan M-Q, Sherif SA, Kridli GT, Lee SS, Padki MM (1991) Thermo-fluid analysis of solar chimneys. In: Morrow TB, Marshall LR, Sherif SA (eds) Industrial Applications of Fluid Mechanics-1991. Proceedings of the 112th ASME winter annual meeting, Atlanta, GA, Dec 1–6 1991, FED-vol. 132, Book #H00720. The American Society of Mechanical Engineers, New York, pp 125–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Weinrebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Weinrebe, G., Bergermann, R., Schlaich, J. (2012). Solar Updraft Towers . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_682

Download citation

Publish with us

Policies and ethics