Skip to main content

Concentrating Receiver Systems (Solar Power Tower)

  • Reference work entry
Book cover Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Absorber:

Device which absorbs concentrated solar radiation and produces heat.

Black body:

Ideal body which would absorb all of the radiation falling upon it.

Blocking, blocking losses:

Power which is lost due to interception of part of reflected sunlight from one heliostat by the backside of another heliostat.

Capacity factor:

Energy produced over a specified time interval.

Central receiver system, concentrating receiver system (CRS):

Solar power plant system in which solar radiation is converted by a heliostat field onto a tower-mounted solar receiver.

Concentration ratio:

Ratio of radiant flux density output to radiant flux density input.

Direct normal irradiation (DNI):

Direct part of energy carried by sun rays on a given area.

Dispatchability, dispatchable:

Ability to dispatch on-demand produced electricity to the grid.

Heat recovery steam generator (HRSG):

A conventional power plant component which produces steam.

Heat transfer fluid (HTF) in a CRS:

Fluid used to absorb heat in the solar central receiver and to transport and to deliver it to another component of a power plant (e.g., Heat recovery steam generator, storage)

Heliostat:

Device consisting of an assembly of mirrors, support structure, drive mechanism, and mounting foundation, which follows continuously the sun in two dimensions and reflects the sun rays to a fixed direction.

Heliostat field:

Sum of all heliostats of a CRS.

Hybrid system:

Any energy system which operates on two or more energy input sources, or which provides more than one form of energy output.

Parasitic power, parasitic losses:

Power required to operate an energy conversion system (e.g., pumps, buildings, blowers, electric devices).

Radiation:

Emission and propagation of electromagnetic energy through space or material.

Receiver efficiency:

Ratio of the thermal output delivered by the receiver HTF to the incident solar radiant flux under reference conditions.

Receiver, solar receiver:

Radiation absorbing system that works like a heat exchanger as it accepts solar radiation and delivers heat to a HTF.

Spillage, spillage losses:

Fraction of concentrated solar radiation which misses the absorber of the solar receiver.

Thermocline:

Zone or layer in a thermal storage volume in which the vertical temperature profile changes rapidly.

Bibliography

Primary Literature

  1. ESTIA, SolarPACES, Greenpeace (2005) Concentrated solar thermal power now

    Google Scholar 

  2. Gary J (2010) Overview of power towers within the CSP subprogram. Presentation to the tower roadmap meeting, Sandia National Laboratories, Albuquerque

    Google Scholar 

  3. SolarPACES Technical Report No. III (2000) 1/00 Catalogue of solar Heliostats, June 2000. IEA-solar power and chemical energy systems Task III: solar technology and applications

    Google Scholar 

  4. DLR (1991) Solar thermal energy utilization, vol 4, Final reports. Springer, Berlin

    Google Scholar 

  5. Hoffschmidt B, Schmitz M (2009) Energy conversion processes for the different energy carriers – high- temperature solar systems. Lecture notes Aachen University of Applied Sciences

    Google Scholar 

  6. Kolb G, Jones S, Donnelly M, Gorman D, Davenport RTR, Lumia R (2007) Heliostat cost reduction: report, Sandia National Laboratories

    Google Scholar 

  7. Kistler BL (1986) A user’s manual for DELSOL3: a computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants. Sandia National Laboratories, Livermore

    Google Scholar 

  8. Stine WB, Geyer M (2001) Power from the Sun. www.powerfromthesun.net

  9. Kleemann M, Meliß M (1993) Regenerative Energiequellen. Springer, Berlin

    Book  Google Scholar 

  10. Belhomme B (2010) Development of optimized aim point strategies for central receiver systems. SOLLAB Doctoral – Colloquium. German Aerospace Center, Institute of Technical Thermodynamics, Cologne, Germany

    Google Scholar 

  11. Ahlbrink N, Belhomme B, Pitz-Paal R (2010) Modelling and simulation of a solar tower power plant with open volumetric air receiver. German Aerospace Center, Institute of Technical Thermodynamics, Cologne

    Google Scholar 

  12. Winter C-J, Sizmann RL, Vant-Hull LL (1991) Solar power plants – fundamentals, technology, systems, economics. Springer, Berlin

    Book  Google Scholar 

  13. Tamaura Y, Utamura M, Kaneko H, Hasuike H, Domingo M, Relloso S (2006) A novel beam-down system for solar power generation with multi-ring central reflectos and molten salt thermal storage. In: Proceedings of the 13th SolarPACES international symposium, Seville, Spain

    Google Scholar 

  14. Siegel N, Kolb G (2008) Design and on-sun testing of a solid particle receiver prototype. In: Proceedings of Energy Sustainability 2008 (ES2008), Jacksonville, 10–14 Aug 2008

    Google Scholar 

  15. Winter C-J, Silzmann RL, Vant-Hull LL (1991) Solar power plants fundamentals technology systems economics. Springer, Berlin

    Book  Google Scholar 

  16. EU (2007) Concentrating solar power: from research to implementation. European Communities, Luxembourg, Luxembourg 2007

    Google Scholar 

  17. Pitz-Paal R, Morhenne J, Friebig M (1988) Investigation on the development of a volumetric receiver with a staggered structure. In: DLR (ed) Solar thermal energy utilization, vol 5, Final reports. Springer, Berlin

    Google Scholar 

  18. Hoffschmidt B (1997) Comparison and evaluation of different concepts of volumetric radiation receivers. Dissertation, German Aerospace Centre, Colgne

    Google Scholar 

  19. Pitz-Paal R, Morhenne J, Friebig M (1989) The construction of a volumetric receiver with a staggered structure. In: DLR (ed) Solar thermal energy utilization, vol 5, Final reports. Springer, Berlin

    Google Scholar 

  20. Morhenne J, Pitz-Paal R (1989) Analysis of convective heat transfer in volumetric receivers built of porous media. In: DLR (ed) Solar thermal energy utilization, vol 5, Final reports. Springer, Berlin

    Google Scholar 

  21. Koll G, Schwarzbözl P, Hennecke K, Hartz T, Schmitz M, Hoffschmidt B (2009) The solar tower Jülich: a research and demonstration plant for central receiver systems. In: Proceedings of SolarPACES 2009, Berlin

    Google Scholar 

  22. Buck R, Lüpfert E, Telez F (2010) Receiver for solar hybrid gas turbine and CC systems (REFOS). In: Proceedings of 10th international symposium on solar thermal, Sydney

    Google Scholar 

  23. Quaschning V (2009) Regenerative Energiesysteme: Technologie – Berechnung – Simulation. Hanser, München

    Google Scholar 

  24. Falcone PK (1986) A handbook for solar central receiver design, SAND 86–8009. Sandia National Laboratories, Albuquerque, Sandia, United States

    Book  Google Scholar 

  25. Álvarez-Lara M, Perosanz F (2009) Alloys selection of molten salts central receivers for solar power plants. In: Proceedings of SolarPACES 2009, Berlin

    Google Scholar 

  26. Giuliano S, Buck R, Schillings C, Al Nuaimi S, Al Obaidli A (2009) Analysis of solar-hybrid gas turbine cogeneration systems with absorption chillers in hot and dry climates. In: Proceedings of SolarPACES 2009, Berlin

    Google Scholar 

  27. SolarPACES (2011) Information about solar tower. www.solarpaces.org

  28. Sattler J, Hoffschmidt B, Trieb F, O’Connell (2011) Towards a sustainable implementation of solar thermal power plant technology in the MENA region, Jülich (in preparation)

    Google Scholar 

  29. Zunft S, Hänel M, Krüger M, Dreißigacker V (2009) High temperature heat storage for air-cooled solar central receiver plants: a design study. In: Proceedings of SolarPACES 2009, Berlin

    Google Scholar 

  30. Alexopoulos S, Göttsche J, Hoffschmidt B, Rau C, Schwarzbözl P (2008) First simulation results for the hybridization of small solar power tower plants. In: EUROSUN 2008, Lissabon

    Google Scholar 

  31. Gary JA, Ho CK, Mancini TR, Kolb GJ, Siegel NP, Iverson BD (2010) Development of a power tower technology roadmap for DOE. In: Proceedings of SolarPACES 2010, Perpignan, France

    Google Scholar 

  32. Alexopoulos S, Helsper C, Hoffschmidt B, Rau C (2009) Simulation tool including a transient smoke tube boiler model for the calculation of small hybrid solar power tower plants. In: Proceedings of twentieth international conference on systems engineering, ICSE2009, Coventry University, Coventry, pp 28–33

    Google Scholar 

  33. Alexopoulos S, Hoffschmidt B, Rau C, Schwarzbözl P (2009) Simulation results for a hybridization concept of a small solar tower power plant. In: SolarPACES symposium, Berlin

    Google Scholar 

  34. Alexopoulos S, Hoffschmidt B, Rau C, Schmitz M, Schwarzbözl P, Pomp S (2010) Simulation results for a hybridized operation of a gas turbine or a burner for a small solar tower power plant. In: SolarPACES symposium, Perpignan

    Google Scholar 

  35. Romero M, Buck R, Pacheco JE (2002) An update on solar central receiver systems, projects and technologies. Trans ASME 124:98–108

    Article  Google Scholar 

  36. Schwarzboezl P, Buck R, Pfänder M, Tellez F (2001) Solar-hybrid gas turbine systems using pressurized volumetric air receiver technology (REFOS). In: Solar thermal power plants and solar chemical processes: advances and perspectives for international cooperation, 5th Cologne solar symposium, Cologne, pp 68–70

    Google Scholar 

  37. Price HW, Whitney DD, Beele HI (1996) SMUD Kokhala power tower study. In: Proceedings of 1996 international solar energy conference, San Antonio

    Google Scholar 

  38. Kribus A, Zaibel R, Carrey D, Segal A, Karni J (1997) A solar-driven combined cycle power plant. Sol Energy 62:121–129

    Article  Google Scholar 

  39. Buck R (2001) Volumetric Receivers for solar-hybrid gas turbine power systems. In: Solar thermal power plants and solar chemical processes: advances and perpectives for international cooperation, 5th Cologne solar symposium, Cologne, pp 68–70

    Google Scholar 

  40. Heller P, Pfänder M, Denk T, Tellez F, Valverde A, Fernandez J, Ring A (2006) Test and evaluation of a solar powered gas turbine system. Sol Energy 80:1225–1230

    Article  CAS  Google Scholar 

  41. Solugas (2009) Project information. www.solugas.com

  42. Romero M, Marcos MJ, Telez FM, Blanco M, Fernandez V, Baonza F, Berger S (2000) Distributed power from the solar tower systems: a MIUS approach. Sol Energy 67(4–6):249–264

    Google Scholar 

  43. Mancini T (2010) An evaluation of trough and power tower systems for near- and long-term markets. Presentation to the U.S. DOE SETP, Washington, DC

    Google Scholar 

  44. Kolb GJ (1990) The design of future central receiver power plants based on lessons learned from the Solar One pilot plan. Sandia National Laboratories, Albuquerque, United States, 1990

    Google Scholar 

  45. Tyner CE, Sutherland JP, Gould WR (1995) Solar-two: a molten salt power tower demonstration. Solarthermische Kraftwerke II. VDI Berichte Nr. 1200

    Google Scholar 

  46. Information provided by Flagsol company (2009)

    Google Scholar 

  47. PSA (1996) Annual technical report 1996

    Google Scholar 

  48. Ferriere A, Perez A, Pruvost A, Albert R, Boutonet C (2010) Development of a heliostat control system and experimental evaluation on a small field at Themis solar site In: Proceedings of SolarPACES 2010, Perpignan, France

    Google Scholar 

  49. Stein W, Kim J-S, Burton A, McNaughton R, Soo Too YC, McGregor J, Nakatani H, Tagawa M, Osada T, Okubo T, Kobayashi K (2010) Design and construction of a 200 kWe Tower Brayton Cycle pilot plant. In: Proceedings of 16th concentrating solar power, SolarPACES symposium 2010, Perpignan

    Google Scholar 

  50. Alexopoulos S, Göttsche J, Hoffschmidt B, Rau C, Schmitz M, Warerkar S, Hennecke K, Schwarzbözl P, Beuter M, Koll G, Hartz T (2009) Solar tower power plant Jülich first experience with an open volumetric receiver plant and presentation of future enhancements. In: Conference Renewable World Europe, Cologne, 26–28 May 2009

    Google Scholar 

  51. eSolar (2011) Utility-scale solar power brochure 2011. www.esolar.com

  52. Meduri PK, Hannemann CR, Pacheco JE (2010) Performance characterization and operation of eSolar’s Sierra Sun Tower power tower plant. In: Proceedings of SolarPACES 2010, Perpignan

    Google Scholar 

  53. Alexopoulos S, Hoffschmidt B (2011) Recent commercial and demonstration solar tower power plants around the world. In: Proceedings of MSE, Nicosia, Cyprus. www.abengoasolar.es

  54. Sierra fact sheet, Sierra SunTower: a new blueprint for solar energy. www.esolar.com

  55. SolarPACES (2011) PS10

    Google Scholar 

  56. NREL (2011) Concentrated solar power projects. www.nrel.gov

  57. Lata J, Alcalde S, Fernández D, Lekub X (2010) First surrounding field of heliostats in the world for commercial solar power plants, Gemasolar. In: Proceedings of SolarPACES 2010, Perpignan

    Google Scholar 

  58. Gemasolar (2010) Project information torresol energy. www.torresolaenergy.com

  59. Concentrated solar power (2009) Global Outlook 09, Greenpeace 2009

    Google Scholar 

  60. Evers AA (2009) Direkt solar hydrogen: the next steps. In: Proceeding of SolarPACES 2009, Berlin

    Google Scholar 

  61. Meier A, Palumbo R, Steinfeld A (2001) Chemical fuels and materials from sunlight. In: Solar thermal power plants and solar chemical processes: advances and perpectives for international cooperation, 5th Cologne solar symposium, Cologne, pp 107–116

    Google Scholar 

  62. DLR (2007) AQUA-CSP concentrating solar power for desalination, final report. German Aerospace Center, Stuttgart, Nov 2007

    Google Scholar 

  63. Alexopoulos S, Hoffschmidt B (2009) Solar tower plant of Jülich and perspectives to combine this technology with desalination in the future for Cyprus. In: 2nd international conference on renewable energy sources & energy efficiency, Nicosia, Cyprus, 23–24 Oct 2009

    Google Scholar 

  64. Kalogirou SA (1997) Survey of solar desalination systems and system selection. Energy Int J 22(1):69–81

    Article  CAS  Google Scholar 

  65. Kalogirou SA (2005) Seawater desalination using renewable energy sources. Prog Energy Combustion Sci 31(3):242–281

    Article  CAS  Google Scholar 

  66. Alexopoulos S, Hoffschmidt B (2010) Solar tower power plant in Germany and future perspectives of the development of the technology in Greece and Cyprus. Renewable Energy 35:1352–1356

    Article  CAS  Google Scholar 

  67. Kalogirou SA (2011) Concentrated solar power plants for electricity and desalinated water production. In: Proceeding World Renewable Energy Congress 2011, Linköpping, Schweden

    Google Scholar 

  68. NREL (2003) Assessment of parabolic trough and power tower solar technology cost and performance forecasts

    Google Scholar 

  69. Solar thermal power (2020) Greenpeace

    Google Scholar 

  70. Kolb GJ (1998) Economic evaluation of solar-only and hybrid power towers using molten-salt technology. Sol Energy 62(1):51–61

    Article  Google Scholar 

  71. Quaschning V, Ortmanns W (2003) Specific cost development of photovoltaic and concentrated solar thermal systems depending on the global irradiation: a study performed with the simulation environment Greenius. In: ISES Solar World Congress 2003, Göteborg, Sweden, 14–19 June 2003

    Google Scholar 

  72. PriceWaterhouseCoopers 100% renewable electricity: a roadmap to 2050 for Europe and North Africa

    Google Scholar 

  73. Williges K, Lilliestam J, Patt AG (2010) Making concentrated solar power competitive with coal: the costs of a European feed-in tariff. Journal Energy Policy 38(6):3089–3097

    Article  Google Scholar 

  74. WBGU (2003) Welt im Wandel: Energiewende zur Nachhaltigkeit. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  75. Meier A, Sattler C (2008) Solar fuels from concentrated sunlight. SolarPACES. www.solarpaces.org

  76. Nitsch J (2008) Weiterentwicklung der Ausbaustrategie Erneuerbare Energien Leitstudie 2008. BMU, Berlin

    Google Scholar 

  77. Richter C (2009) Sauberer Strom aus den Wüsten – Globaler Ausblick auf die Entwicklung solarthermischer Kraftwerke

    Google Scholar 

  78. Philibert C (2005) The present and future use of solar thermal energy as a primary source of energy. International Energy Agency, Paris

    Google Scholar 

  79. DLR Study (2006) TRANS-CSP Trans-Mediterranean interconnection for concentrating solar power, Stuttgart, June 2006

    Google Scholar 

  80. IEA (2010) Technology roadmap: concentrated solar power. OECD/IEA, Paris, France, 2010

    Google Scholar 

  81. Kearney AT (2010) Solar thermal electricity 2025, June 2010

    Google Scholar 

  82. Pitz-Paal R, Dersch J, Milow B (2005) European concentrated solar thermal road-mapping. DLR, Cologne

    Google Scholar 

  83. Funke A (2009) Challenges for EPC projects of large scale solar thermal power plants. In: Proceedings of SolarPACES 2009, Berlin

    Google Scholar 

  84. IEA (2011) Interactions of policies for renewable energies and climate. OECD/IEA, Paris

    Google Scholar 

  85. Schott Solar Memorandum on concentrated solar power plant Technology Schott solar. www.schottsolar.com

  86. U.S. Department of Energy (2008) Concentrating solar power commercial application study: reducing water consumption of concentrating solar power electricity generation, report to Congress

    Google Scholar 

  87. (2008) Extracting ourselves from oil, April 2008. Journal Research EU, Special issue, pp 23–25

    Google Scholar 

Books and Reviews

  • Kalogirou S (2009) Solar energy engineering: processes and systems. Academic, Burlington

    Google Scholar 

  • Mohr M, Svoboda P, Unger H (1999) Praxis solarthermischer Kraftwerke. Springer, Berlin

    Book  Google Scholar 

  • Newton CC (2008) Concentrated solar thermal energy. VDM, Saarbrücken

    Google Scholar 

  • Quasching V (2009) Regenerative Energiesysteme: Technologie-Berechnen-Simulation. Hanser, München

    Google Scholar 

  • Vogel K (2010) Large scale solar thermal power. Wiley-VCH, Weinheim

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiros Alexopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Alexopoulos, S., Hoffschmidt, B. (2012). Concentrating Receiver Systems (Solar Power Tower) . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_677

Download citation

Publish with us

Policies and ethics