Skip to main content

Sediment–Water Interfaces , Chemical Flux at

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Benthic boundary layer:

A slow moving water layer above the sediment.

Bioturbation transport:

A chemical mobility process driven by the presence of macrofauna and macroflora residing near the interface.

Chemical flux:

The basic term that quantifies chemical mobility across an interface with units of mass per area per time (kg/m2/s)

Chemical mobility:

A general term used to denote the idea that chemicals do move from place to place.

Interface:

A real or imaginary plane which separates water from sediment.

Mass transfer rate:

The chemical flux times the area perpendicular to its direction of movement (kg/s).

Sediment surface layers:

A series of distinctive mud layers occupying thickness of several centimeters depth.

Transport model:

One of several concepts for describing a chemical mobility process, and the associated formula or algorithm needed to describe it mathematically (a.k.a., the flux expression).

Bibliography

  1. Lewis WK, Whitman WG (1924) Principles of gas absorption. Indust Eng Chem 16:1215–1220

    Article  CAS  Google Scholar 

  2. Rhoads DC, Germano JD (1982) Characterization of benthic processes using sediment profile imaging: An efficient method of remote ecological monitoring of the seafloor (REMOTS System). Mar Ecol Prog Ser 8:115–128

    Article  Google Scholar 

  3. Rhoads DC, Germano JD (1986) Interpreting long-term changes in benthic community structure: a new protocol. Hydrobiologia 142:291–308

    Article  Google Scholar 

  4. Santschi P, Hohener P, Benoit G, Brink MB (1990) Chemical processes at the sediment-water interface. Mar Chem 30:269–315

    Article  CAS  Google Scholar 

  5. Duursma EK, Smies M (1982) Sediments and transfer at and in the bottom interfacial layer. In: Kullenberg G (ed) Pollutant transfer and transport in the sea, vol II. CRC Press, Boca Raton, pp 101–137

    Google Scholar 

  6. Krantzberg G (1985) The influence of bioturbation on physical, chemical and biological parameters in aquatic environment – a review. Environ Pollut (Ser A) 39:99–122

    Article  CAS  Google Scholar 

  7. DiToro DM (2001) Sediment flux modeling. Wiley, New York

    Google Scholar 

  8. Kullenberg G (ed) (1976) Pollutant transfer and transport in the Sea-II. CRC Press, Boca Raton

    Google Scholar 

  9. Boudreau BP, Jorgensen BB (eds) (2001) The benthic boundary layer. Oxford University Press, New York

    Google Scholar 

  10. McCave IN (ed) (1976) The benthic boundary layer. Plenum, New York

    Google Scholar 

  11. Windom HL, Duce RA (1976) Marine pollutant transport. Lexington, Lexington

    Google Scholar 

  12. Tenore KR, Coull BC (eds) (1980) Marine benthic dynamics. University of South Carolina Press, Columbia

    Google Scholar 

  13. Fanning KA, Manheim FT (eds) (1982) The dynamic environment of the ocean floor. Lexington Books, Lexington

    Google Scholar 

  14. Thibodeaux LJ (1996) Environmental chemodynamics. Wiley, New York

    Google Scholar 

  15. Lerman A (1979) Geochemical processes water and sediment environments. Wiley, New York

    Google Scholar 

  16. Boudreau BP (1997) Diagenetic models and their implementation. Springer, Berlin

    Book  Google Scholar 

  17. Schink DR, Guinasso NL Jr (1975) Modeling the influence of bioturbation and other processes of CaCO3 dissolution at the sea floor. In: Andersen NR, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Plenum, New York, pp 375–399

    Google Scholar 

  18. Berner RA (1980) Early diagenesis. Princeton University Press, Princeton

    Google Scholar 

  19. Thibodeaux LJ, Matisoff G, Reible DD (2010) Bioturbation and other sorbed-phase transport processes in surface soils and sediment. In: Thibodeaux LJ, Mackay D (eds) Handbook of chemical mass transport in the environment. CRC Press, Boca Raton (Chap 13)

    Google Scholar 

  20. Thibodeaux LJ, Wolfe JR, Dekker TJ (2010) Advective porewater flux and chemical transport in bed-sediment. In: Thibodeaux LJ, Mackay D (eds) Handbook of chemical mass transport in the environment. CRC Press, Boca Raton (Chap 11)

    Google Scholar 

  21. Singh VP, Reible DD, Thibodeaux LJ (1988) Mathematical modeling of fine sediment transport. Hydrol J IAH 11:1–3

    Google Scholar 

  22. Lick W (2009) Sediment and contaminant transport in surface waters. CRC Press, Boca Raton

    Google Scholar 

  23. Lohmann R, Dachs J (2010) Deposition of dissolved and particle-bound chemicals from surface ocean. In: Thibodeaux LJ, Mackay D (eds) Handbook of chemical mass transport in the environment. CRC Press, Boca Raton (Chap 17)

    Google Scholar 

  24. Yang CT (2003) Sediment transport. Krieger, Malabar

    Google Scholar 

  25. DePinto JV, McCulloch RD, Redder TM, Wolfe JR, Dekker TJ (2010) Deposition and resuspension of particles and associated chemical transport across the sediment-water interface. In: Thibodeaux LJ, Mackay D (eds) Handbook of chemical mass transport in the environment. CRC Press, Boca Raton (Chap 10)

    Google Scholar 

  26. Reible DD, Valsaraj KT, Thibodeaux LJ (1991) Chemodynamic models for transport of contaminants from sediment beds. In: Hutzinger O (ed) The handbook of environmental chemistry, part F, vol 2. Springer, Berlin, pp 186–228

    Google Scholar 

  27. Thibodeaux LJ, Reible DD, Valsaraj KT (2002) Non-particle resuspension chemical transport from stream beds. In: Lipnick RL, Mason RP, Phillips ML, Pittman CU Jr (eds) Chemicals in the environment, vol 806, ACS symposium series. American Chemical Society, Washington, DC, pp 130–149

    Chapter  Google Scholar 

  28. Thibodeaux LJ, Valsaraj KT, Reible DD (2001) Bioturbation–driven transport of hydrophobic organic contaminants from bed sediment. Environ Eng Sci 18:215–223

    Article  CAS  Google Scholar 

  29. Erickson MJ, Turner CL, Thibodeaux LJ (2005) Field observation and modeling of dissolved fraction-sediment-water exchange coefficients for PCBs in the Hudson River. Environ Sci Technol 39:549–555

    Article  CAS  Google Scholar 

  30. Whitman WG (1923) The two-film theory of gas absorption. Chem Metall Eng 29:146–148

    CAS  Google Scholar 

  31. Thibodeaux LJ, Bierman VJ (2003) The bioturbation-driven chemical release process. Environ Sci Technol 1:253A–258A

    Google Scholar 

  32. Monteith JL, Unsworth M (1990) Principles of environmental physics. Butterworth-Heinemann, Oxford

    Google Scholar 

  33. Mackay D (2001) Multimedia environmental models. Lewis, Boca Raton

    Book  Google Scholar 

  34. Slinn WGN (1978) 4-Wet and dry removal processes. In: NRC (ed) The tropospheric transport of pollutants and other substances to the oceans. National Academy of Sciences, National Academy Press, Washington, DC

    Google Scholar 

  35. Trapp S, Matthies M (1998) Chemodynamics and environmental modeling. Springer, Berlin

    Book  Google Scholar 

  36. Van de Meent D (1993) Simple box: a generic multimedia fate evaluation model. RIVM Report No. 6727200001. Bilthoven

    Google Scholar 

  37. Thibodeaux LJ, Mackay D (eds) (2010) Chapters 10,11,12,13 &17. In: Handbook of chemical mass transport in the environment. CRC Press, Boca Raton

    Google Scholar 

  38. Thoma GJ, Koulermos AC, Valsaraj KT, Reible DD, Thibodeaux LJ (1991) The effect of pore-water colloids on the transport of hydrophobic organic compounds from bed sediments. In: Baker RA (ed) Organic substances in water, vol 1, Humics and soils. Lewis, Boca Raton

    Google Scholar 

  39. Valsaraj KT, Thibodeaux LJ, Reible DD (1997) A quasi-steady-state pollutant flux methodology for determining sediment quality criteria. Environ Toxicol Chem 16:391–396

    Article  CAS  Google Scholar 

  40. Savant SA, Reible DD, Thibodeaux LJ (1987) Convective transport within stable river sediments. Water Resour Res 23:1763–1768

    Article  CAS  Google Scholar 

  41. Thibodeaux LJ, Reible DD, Bosworth WS, Sarapas LC (1990) A theoretical evaluation of the effectiveness of capping PCB contaminated New Bedford Harbor bed sediments. Final Report. HSRC. Middelton Library, Louisiana State University, Baton Rouge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Thibodeaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Thibodeaux, L.J., Germano, J. (2012). Sediment–Water Interfaces , Chemical Flux at. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_645

Download citation

Publish with us

Policies and ethics