Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Aviation and Atmosphere

  • Hartmut Grassl
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_555

Definition of the Subject

Commercial air traffic ’s peculiarity, emissions into the atmosphere mainly at cruising altitude, leads to changed impacts on global climate in comparison to other modes of transport. This entry concentrates on these differences but also looks onto measures to reduce emissions, e.g., the emission trading scheme in the European Union, and presents an airline emission index comparing commercial airlines.


The exhaust of commercial and also military aircraft needs – in comparison to the one from power plants, cars, trucks, heaters in buildings, railway, ships, and burners in industry – a special discussion, because of its main injection at cruising altitudes, i.e., into the upper troposphere or lower stratosphere from about 9 to 12 km height. This part of the Earth’s atmosphere is nearly all the time colder than −40°C, often it is with about −70°C the coldest one in mid-latitudes in the lowest at least 60 km. Therefore, the water vapor concentration...

This is a preview of subscription content, log in to check access.



I am very thankful to Dietrich Brockhagen from atmosfair for many discussions over the years on attempts to integrate aviation into the emission reduction arena and especially on different metrics to account for the climate effects of air traffic besides those by CO2.


  1. 1.
    atmosfair (2011) The atmosfair airline Index (AAI), atmosfair gGmbH, Berlin 2011. https://www.atmosfair.de/en/air-travel-climate/airline-index/
  2. 2.
    Balkanski Y, Myhre G, Gauss M, Rädel G, Highwood E, Shine KP (2010) Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation. Atmos Chem Phys Discuss 10:1659–1691CrossRefGoogle Scholar
  3. 3.
    Baughcum SL, Henderson SC, Tritz TG, Pickett DC (1996) Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA CR4700. NASA, Langley Research Center, HamptonGoogle Scholar
  4. 4.
    Baughcum SL, Sutkus DJ Jr, Henderson SC (1998) Year 2015 aircraft emission scenario for scheduled air traffic. NASA-CR-1998-207638. National Aeronautics and Space Administration, Langley Research Center, Hampton, 44 ppGoogle Scholar
  5. 5.
    Berghof R, Schmitt A, Eyers C, Haag K, Middel J, Hepting M, Grübler A, Hancox R (2005) CONSAVE 2050. Final technical report. DLR, KölnGoogle Scholar
  6. 6.
    Berntsen T, Fuglestvedt J (2008) Global temperature responses to current emissions from the transport sectors. Proc Natl Acad Sci (PNAS) 105:19154–19159CrossRefGoogle Scholar
  7. 7.
    Borken-Kleefeld J, Fuglestvedt J, Berntsen T (2010) Specific climate impact of passenger and freight transport. Environ Sci Tech 44:5700–5706CrossRefGoogle Scholar
  8. 8.
    Cariolle D, Caro D, Paoli R, Hauglustaine D, Cuenot B, Cozic A, Paugam R (2009) Parameterization of plume chemistry into large scale atmospheric models: application to aircraft NOx emissions. J Geophys Res 114:D19302CrossRefGoogle Scholar
  9. 9.
    EFTE (European Federation for Transport and Environment) (2009) Bunker fuels and the Kyoto protocol: how ICAO and the IMO failed the climate change test, Brussels, June 2009, 19 ppGoogle Scholar
  10. 10.
    Eyers CJ, Addleton D, Atkinson K, Broomhead MJ, Christou R, Elliff T, Falk R, Gee I, Lee DS, Marizy C, Michot S, Middel J, Newton P, Norman P, Plohr M, Raper D, Stanciou R (2005) AERO2K global aviation emissions inventories for 2002 and 2025. QINETIQ/04/0113, FarnboroughGoogle Scholar
  11. 11.
    Fuglestvedt JS, Shine KP, Berntsen T, Cook J, Lee DS, Stenke A, Skeie RB, Velders GJM, Waitz IA (2010) Transport impacts on atmosphere and climate: metrics. Atmos Environ. doi:10.1016/j.atmosenv.2009.04.044Google Scholar
  12. 12.
    Gardner RM, Adams JK, Cook T, Larson LG, Falk RS, Fleuit E, Förtsch W, Lecht M, Lee DS, Leech MV, Lister DH, Massé B, Morris K, Newton PJ, Owen A, Parker E, Schmitt A, ten Have H, Vandenberghe C (1998) ANCAT/ EC2 aircraft emissions inventories for 1991/1992 and 2015. Final report. Produced by the ECAC/ANCAT and EC working group. European civil aviation conferenceGoogle Scholar
  13. 13.
    Henderson SC, Wickrama UK, Baughcum SL, Begin JJ, Franco F, Greene DL, Lee DS, McLaren ML, Mortlock AK, Newton PJ, Schmitt A, Sutkus DJ, Vedantham A, Wuebbles DJ (1999) Aircraft emissions: current inventories and future scenarios. In: Penner JE, Lister DH, Griggs DJ, Dokken DJ, McFarland M (eds) ‘Aviation and the Global Atmosphere’, intergovernmental panel on climate change. Cambridge University Press, UKGoogle Scholar
  14. 14.
    Hodnebrog Ø, Berntsen TK, Dessens O, Gauss M, Grewe V, Isaksen ISA, Koffi B, Myhre G, Olivie D, Prather M, Stordal F, Szopa S, Tang Q, van Velthoven P, Williams J, Ødemark K (2011) Future impact of nonland-based traffic emissions on atmospheric ozone and OH – an optimistic scenario and a possible mitigation strategy. Atmos Chem Phys Discuss 11:16801–16859Google Scholar
  15. 15.
    Hoor P, Borken-Kleefeld J, Caro D, Dessens O, Endresen O, Gauss M, Grewe V, Hauglustaine D, Isaksen ISA, Jöckel P, Lelieveld J, Myhre G, Meijer E, Olivie D, Prather M, Schnadt Poberaj C, Shine KP, Staehelin J, Tang Q, van Aardenne J, van Velthoven P, Sausen R (2009) The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY. Atmos Chem Phys 9:3113–3136CrossRefGoogle Scholar
  16. 16.
    IEA (2007) Oil Information 2006, Table 9, 749 pp. International Energy Agency, ParisGoogle Scholar
  17. 17.
    IPCC (1999) Aviation and the global atmosphere. In: Penner JE, Lister DH, Griggs DJ, Dokken DJ, McFarland M (eds) Intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    IPCC (2000) In: Nakicenovic N, Swart R (eds) Emission scenarios. Cambridge University Press, Cambridge, pp 570Google Scholar
  19. 19.
    IPCC (2001) Climate change 2001: the scientific basis. Report of working group I. Cambridge University Press, Cambridge, UKGoogle Scholar
  20. 20.
    IPCC (2007a) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  21. 21.
    IPCC (2007b) In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  22. 22.
    Kim BY, Fleming GG, Lee JJ, Waitz IA, Clarke JP, Balasubramanian S, Malwitz A, Klima K, Locke M, Holsclaw CA, Maurice LQ, Gupta ML (2007) System for assessing Aviation’s Global Emissions (SAGE), Part 1: model description and inventory results. Trans Res D12:325–346Google Scholar
  23. 23.
    Koffi B, Szopa S, Cozic A, Hauglustaine D, van Velthoven P (2010) Present and future impact of aircraft, road traffic and shipping emissions on global tropospheric ozone. Atmos Chem Phys 10:11681–11705CrossRefGoogle Scholar
  24. 24.
    Lee DS et al (2009) Aviation and global climate change in the 21st century. Atmos Environ. doi:10.1016/j.atmosenv.2009.04.024Google Scholar
  25. 25.
    Lee DS et al (2010) Transport impacts on atmosphere and climate: aviation. Atmos Environ 44:4678–4734CrossRefGoogle Scholar
  26. 26.
    Liu X, Penner JE, Wang M (2009) Influence of anthropogenic sulphate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model. J Geophys Res 114:D03204. doi:10.1029/2008JD010492CrossRefGoogle Scholar
  27. 27.
    Myhre G, Shine KP, Rädel G, Gauss M, Isaksen ISA, Tang Q, Prather M, Williams JE, van Velthoven P, Dessens O, Koffi B, Szopa S, Hoor P, Grewe V, Borken-Kleefeld J (2010) Radiative forcing due to changes in ozone and methane caused by the transport sector. Atmos Environ 45:387–394CrossRefGoogle Scholar
  28. 28.
    Olivié DJL, Cariolle D, Teyssèdre H, Salas D, Voldoire A, Clark H, Saint-Martin D, Michou M, Karcher F, Balkanski Y, Gauss M, Dessens O, Koffi B, Shine KP, Sausen R (2010) Modeling the climate impact of road transport, maritime shipping and aviation over the period 1860–2100 with an AOGCM. Submitted to Atmos Chem PhysGoogle Scholar
  29. 29.
    Penner JE, Chen Y, Wang M, Liu X (2009) Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmos Chem Phys 9(2009):879–896CrossRefGoogle Scholar
  30. 30.
    QUANTIFY (2011) Quantifying the climate impact of global and European transport systems, integrated project, sixth framework programme, sub-priority global change and ecosystems, final activity report, publishable summaryGoogle Scholar
  31. 31.
    Sausen R (ed) (2010) Transport impacts on atmosphere and climate: the ATTICA assessment report. Atmos Env 44, 4645–4816 (special issue)Google Scholar
  32. 32.
    Sausen R, Schumann U (2000) Estimates of the climate response to aircraft CO2 and NOx emissions scenarios. Clim Change 44:27–58CrossRefGoogle Scholar
  33. 33.
    Sutkus DJ, Baughcum SL, DuBois DP (2001) Scheduled civil aircraft emission inventories for 1999: database development and analysis. National aeronautics and space administration, glenn research centre. NASA CR-2001/211216Google Scholar
  34. 34.
    Vazquez-Navarro M (2010) Life cycle of contrails from a time series of geostationary satellite images. DLR-Forschungsbericht 2010–19, 139 ppGoogle Scholar
  35. 35.
    Vazquez-Navarro M, Mannstein H, Mayer B (2010) An automatic contrail tracking algorithm; Atmos. Meas Tech 3:1089–1101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Max Planck Institute for MeteorologyHamburgGermany