Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Hydrogen via Direct Solar Production

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_515

Definition of the Subject

Developing renewable sources of energy to replace reliance on fossil fuels remains a major challenge. Sunlight is recognized as the largest of all carbon-neutral energy sources with 4.3 × 1020 J reaching the earth’s surface in 1 h, larger than the current energy consumption by humans in a year [1, 2]. Plants harness solar energy through photosynthesis , which is used to power the biological world and ultimately stored in carboniferous fossil fuels. The rate of production of fossil fuels is exceeded by current consumption leading to interest in artificial means to harvest solar energy. Growing energy demands due to rising living standards and increased population have stimulated a global initiative to exploring alternative means to harness solar energy and alternative energy sources. Current methods to harness solar energy for practical purposes do not compete with fossil fuel use. Artificial photosynthesis , use of synthetic systems that mimic...

This is a preview of subscription content, log in to check access.



Acknowledgment is made to all the students and research scientists who have worked in this area in the Brewer Group. Special acknowledgment to Ms. Jessica D. Knoll for help with the manuscript. Acknowledgment is also made to the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Sciences, US Department of Energy for their generous support of our research and to the financial collaboration of Phoenix Canada Oil Company which holds long-term license rights to commercialize our Rh-based technology.


  1. 1.
    Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145CrossRefGoogle Scholar
  2. 2.
    DOE (2005) Report of the basic energy sciences workshop on solar utilization. Department of Energy, Washington, DCGoogle Scholar
  3. 3.
    Lewis NS (2009) A perspective on forward research and development paths for cost-effective solar energy utilization. ChemSusChem 2:383–386CrossRefGoogle Scholar
  4. 4.
    Nocera DG (2009) Living healthy on a dying planet. Chem Soc Rev 38:13–15CrossRefGoogle Scholar
  5. 5.
    Bockris JO’M (1999) Hydrogen economy in the future. Int J Hydrogen Energ 24:1–15CrossRefGoogle Scholar
  6. 6.
    Lubitz W, Tumas W (2007) Hydrogen: an overview. Chem Rev 107:3900–3903CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Balzani V, Moggi L, Scandola F (1987) Towards a supramolecular photochemistry: assembly of molecular components to obtain photochemical molecular devices. In: Balzani V (ed) Supramolecular photochemistry. Reidel, Dordrecht, pp 1–28CrossRefGoogle Scholar
  9. 9.
    Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244CrossRefGoogle Scholar
  10. 10.
    Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord Chem Rev 84:85–277CrossRefGoogle Scholar
  11. 11.
    Kirch M, Lehn J-M, Sauvage J-P (1979) Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. An approach to the photochemical conversion and storage of solar energy. Helv Chim Acta 62:1345–1384CrossRefGoogle Scholar
  12. 12.
    Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996) Luminescent and redox-active polynuclear transition metal complexes. Chem Rev 96:759–834CrossRefGoogle Scholar
  13. 13.
    Kawanishi Y, Kitamura N, Tazuke S (1989) Dependence of spectroscopic, electrochemical, and excited-state properties of tris chelate ruthenium(II) complexes on ligand structure. Inorg Chem 28:2968–2975CrossRefGoogle Scholar
  14. 14.
    Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) Photochemistry of Ru(bpy)32+. J Am Chem Soc 104:4803–4810CrossRefGoogle Scholar
  15. 15.
    Demas JN, Adamson AW (1971) A new photosensitizer. Tris(2,2′-bipyridine)ruthenium(II) chloride. J Am Chem Soc 93:1800–1801CrossRefGoogle Scholar
  16. 16.
    Gafney HD, Adamson AW (1972) Excited state Ru(bipyr)32+ as an electron-transfer reductant. J Am Chem Soc 94:8238–8239CrossRefGoogle Scholar
  17. 17.
    Bock CR, Meyer TJ, Whitten DG (1974) Electron transfer quenching of the luminescent excited state of tris(2,2′-bipyridine)ruthenium(II). Flash photolysis relaxation technique for measuring the rates of very rapid electron transfer reactions. J Am Chem Soc 96:4710–4712CrossRefGoogle Scholar
  18. 18.
    Bock CR, Connor JA, Gutierrez AR, Meyer TJ, Whitten DG, Sullivan BP, Nagle JK (1979) Estimation of excited-state redox potentials by electron-transfer quenching. Application of electron-transfer theory to excited-state redox processes. J Am Chem Soc 101:4815–4824CrossRefGoogle Scholar
  19. 19.
    Tinker LL, McDaniel ND, Bernhard S (2009) Progress towards solar-powered homogeneous water photolysis. J Mater Chem 19:3328–3337CrossRefGoogle Scholar
  20. 20.
    Wang M, Na Y, Gorlov M, Sun L (2009) Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems. Dalton Trans 33:6458–6467CrossRefGoogle Scholar
  21. 21.
    Inagaki A, Akita M (2010) Visible-light promoted bimetallic catalysis. Coord Chem Rev 254:1220–1239CrossRefGoogle Scholar
  22. 22.
    Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58CrossRefGoogle Scholar
  23. 23.
    Lin CT, Böttcher W, Chou M, Creutz C, Sutin N (1976) Mechanism of the quenching of the emission of substituted polypyridineruthenium(II) complexes by iron(III), chromium(III), and europium(III) ions. J Am Chem Soc 98:6536–6544CrossRefGoogle Scholar
  24. 24.
    Kober EM, Sullivan BP, Dressick WJ, Caspar JV, Meyer TJ (1980) Highly luminescent polypyridyl complexes of osmium(II). J Am Chem Soc 102:7383–7385CrossRefGoogle Scholar
  25. 25.
    Braunstein CH, Baker AD, Strekas TC, Gafney HD (1984) Spectroscopic and electrochemical properties of the dimer tetrakis(2,2′-bipyridine)(μ-2,3-bis(2-pyridyl)pyrazine)diruthenium(II) and its monomeric analogue. Inorg Chem 23:857–864CrossRefGoogle Scholar
  26. 26.
    Fuchs Y, Lofters S, Dieter T, Shi W, Morgan R, Strekas TC, Gafney HD, Baker AD (1987) Spectroscopic and electrochemical properties of dimeric ruthenium(II) diimine complexes and determination of their excited state redox properties. J Am Chem Soc 109:2691–2697CrossRefGoogle Scholar
  27. 27.
    Wallace AW, Murphy WR, Petersen JD (1989) Electrochemical and photophysical properties of mono- and bimetallic ruthenium(II) complexes. Inorg Chim Acta 166:47–54CrossRefGoogle Scholar
  28. 28.
    Richter MM, Brewer KJ (1991) Synthesis and characterization of osmium(II) complexes incorporating polypyridyl bridging ligands. Inorg Chim Acta 180:125–131CrossRefGoogle Scholar
  29. 29.
    Abdel-Shafi AA, Worrall DR, Ershov AY (2004) Photosensitized generation of singlet oxygen from ruthenium(II) and osmium(II) bipyridyl complexes. Dalton Trans 7:30–36CrossRefGoogle Scholar
  30. 30.
    Winkler JR, Netzel TL, Creutz C, Sutin N (1987) Direct observation of metal-to-ligand charge-transfer (MLCT) excited states of pentaammineruthenium(II) complexes. J Am Chem Soc 109:2381–2392CrossRefGoogle Scholar
  31. 31.
    Beley M, Collin J-P, Sauvage J-P, Sugihara H, Heisel F, Miehé A (1991) Photophysical and photochemical properties of ruthenium and osmium complexes with substituted terpyridines. J Chem Soc Dalton Trans 23:3157–3159CrossRefGoogle Scholar
  32. 32.
    Rillema DP, Mack KB (1982) The low-lying excited state in ligand π-acceptor complexes of ruthenium(II): mononuclear and binuclear species. Inorg Chem 21:3849–3854CrossRefGoogle Scholar
  33. 33.
    Berger RM (1990) Excited-state absorption spectroscopy and spectroelectrochemistry of tetrakis(2,2′-bipyridine)(μ-2,3-bis(2-pyridyl)pyrazine)diruthenium(II) and its Monomeric counterpart: a comparative study. Inorg Chem 29:1920–1924CrossRefGoogle Scholar
  34. 34.
    Balzani V, Campagna S, Denti G, Juris A, Serroni S, Venturi M (1998) Designing dendrimers based on transition-metal complexes: light-harvesting properties and predetermined redox patterns. Acc Chem Res 31:26–34CrossRefGoogle Scholar
  35. 35.
    Campagna S, Pietro CD, Loiseau F, Maubert B, McClenaghan N, Passalacqua R, Puntoriero F, Ricevuto V, Serroni S (2002) Recent advances in luminescent polymetallic dendrimers containing the 2,3-Bis(2′-pyridyl)pyrazine bridging ligand. Coord Chem Rev 229:67–74CrossRefGoogle Scholar
  36. 36.
    Molnar SM, Nallas GNA, Bridgewater JS, Brewer KJ (1994) Photoinitiated electron collection in a mixed-metal trimetallic complex of the form [{(bpy)2Ru(dpb)}2IrCl2](PF6)5 (bpy = 2,2′-bipyridine and dpb = 2,3-bis(2-pyridyl)benzoquinoxaline). J Am Chem Soc 116:5206–5210CrossRefGoogle Scholar
  37. 37.
    Konduri R, Ye H, MacDonnell FM, Serroni S, Campagna S, Rajeshwar K (2002) Ruthenium photocatalysts capable of reversibly storing up to four electrons in a single acceptor ligand: a step closer to artificial photosynthesis. Angew Chem Int Edit 41:3185–3187CrossRefGoogle Scholar
  38. 38.
    Konduri R, de Tacconi NR, Rajeshwar K, MacDonnell FM (2004) Multielectron photoreduction of a bridged ruthenium dimer, [(phen)2Ru(tatpp)Ru(phen)2](PF6)4: aqueous reactivity and chemical and spectroelectrochemical identification of the photoproducts. J Am Chem Soc 126:11621CrossRefGoogle Scholar
  39. 39.
    Polyansky DE, Cabelli D, Muckerman JT, Fukushima T, Tanaka K, Fujita E (2008) Mechanism of hydride donor generation using a Ru(II) complex containing an NAD+ model ligand: pulse and steady-state radiolysis studies. Inorg Chem 47:3958–3968CrossRefGoogle Scholar
  40. 40.
    Fukushima T, Fujita E, Muckerman JT, Polyansky DE, Wada T, Tanaka K (2009) Photochemical stereospecific hydrogenation of a Ru complex with an NAD+/NADHType ligand. Inorg Chem 48:11510–11512CrossRefGoogle Scholar
  41. 41.
    Lomoth R, Ott S (2009) Introducing a dark reaction to photochemistry: photocatalytic hydrogen from [FeFe] hydrogenase active site model complexes. Dalton Trans 7:9952–9959CrossRefGoogle Scholar
  42. 42.
    Frey M (2002) Hydrogenases: hydrogen-activating enzymes. Chembiochem 3:153–160CrossRefGoogle Scholar
  43. 43.
    Capon J-F, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J (2009) Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coord Chem Rev 253:1476–1494CrossRefGoogle Scholar
  44. 44.
    Wolpher H, Borgström M, Hammarström L, Bergquist J, Sundström V, Styring S, Sun L, Ǻkermark B (2003) Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorg Chem Commun 6:989–991CrossRefGoogle Scholar
  45. 45.
    Ott S, Kritikos M, Åkermark B, Sun L (2003) Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer. Angew Chem Int Edit 42:3285–3288CrossRefGoogle Scholar
  46. 46.
    Ott S, Borgström M, Kritikos M, Lomoth R, Bergquist J, Ǻkermark B, Hammarström L, Sun L (2004) Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: synthesis and photophysical properties. Inorg Chem 43:4683–4692CrossRefGoogle Scholar
  47. 47.
    Ekström J, Abrahamsson M, Olson C, Bergquist J, Kaynak FB, Eriksson L, Sun L, Becker H-C, Ǻkermark B, Hammarström L, Ott S (2006) Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Trans 4599–4606Google Scholar
  48. 48.
    Li X, Wang M, Zhang S, Pan J, Na Y, Liu J, Åkermark B, Sun L (2008) Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: photo-induced electron transfer and hydrogen generation. J Phys Chem B 112:8198–8202CrossRefGoogle Scholar
  49. 49.
    Chong D, Georgakaki IP, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga MP, Darensbourg MY (2003) Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships. Dalton Trans 4158–4163Google Scholar
  50. 50.
    Lubner CE, Grimme R, Bryant DA, Goldbeck JH (2010) Wiring photosystem I for direct solar hydrogen production. Biochemistry 49:404–414CrossRefGoogle Scholar
  51. 51.
    Na Y, Wang M, Pan J, Zhang P, Åkermark B, Sun L (2008) Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg Chem 47:2805–2810CrossRefGoogle Scholar
  52. 52.
    Streich D, Astuti Y, Orlandi M, Schwartz L, Lomoth R, Hammarström L, Ott S (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chem Eur J 16:60–63CrossRefGoogle Scholar
  53. 53.
    Zhang P, Wang M, Na Y, Li X, Jiang Y, Sun L (2010) Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans 39:1204–1206CrossRefGoogle Scholar
  54. 54.
    Elvington M, Brown J, Arachchige SM, Brewer KJ (2007) Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J Am Chem Soc 129:10644–10645CrossRefGoogle Scholar
  55. 55.
    Arachchige SM, Brown J, Brewer KJ (2008) Photochemical hydrogen production from water using the new photocatalyst [{(bpy)2Ru(dpp)}2RhBr2](PF6)5. J Photochem Photobiol A 197:13–17CrossRefGoogle Scholar
  56. 56.
    Arachchige SM, Brown JR, Chang E, Jain A, Zigler DF, Rangan K, Brewer KJ (2009) Design considerations for a system for photocatalytic hydrogen production from water employing mixed-metal photochemical molecular devices for photoinitiated electron collection. Inorg Chem 48:1989–2000CrossRefGoogle Scholar
  57. 57.
    Rangan K, Arachchige SM, Brown JR, Brewer KJ (2009) Solar energy conversion using photochemical molecular devices: photocatalytic hydrogen production from water using mixed-metal supramolecular complexes. J Energ Environ Sci 2:410–419CrossRefGoogle Scholar
  58. 58.
    Miyake Y, Nakajima K, Sasaki K, Saito R, Nakanishi H, Nishibayashi Y (2009) Design and synthesis of diphosphine ligands bearing an osmium(II) bis(terpyridyl) moiety as a light-harvesting unit: application to photocatalytic production of dihydrogen. Organometallics 28:5240–5243CrossRefGoogle Scholar
  59. 59.
    Heyday AF, Nocera DG (2001) Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science 293:1639–1641CrossRefGoogle Scholar
  60. 60.
    Brown GM, Chan SF, Creutz C, Schwarz HA, Sutin N (1979) Mechanism of the formation of dihydrogen from the photoinduced reactions of tris(bipyridine)ruthenium(II) with tris(bipyridine)rhodium(III). J Am Chem Soc 101:7638–7640CrossRefGoogle Scholar
  61. 61.
    Cline ED, Adamson SE, Bernhard S (2008) Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg Chem 47:10378–10388CrossRefGoogle Scholar
  62. 62.
    Fihri A, Artero V, Razavet M, Baffert C, Leibl W, Fontecave M (2008) Cobaloxime-based photocatalytic devices for hydrogen production. Angew Chem Int Edit 47:564–567CrossRefGoogle Scholar
  63. 63.
    Fihri A, Artero V, Pereira A, Fontecave M (2008) Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans 5567–5569Google Scholar
  64. 64.
    Li C, Wang M, Pan J, Zhang P, Zhang R, Sun L (2009) Photochemical hydrogen production catalyzed by polypyridyl ruthenium-cobaloxime heterobinuclear complexes with different bridges. J Organomet Chem 694:2814–2819CrossRefGoogle Scholar
  65. 65.
    Brown GM, Brunschwig BS, Creutz C, Endicott JF, Sutin N (1979) Homogeneous catalysis of the photoreduction of water by visible light. Mediation by a tris(2,2′-bipyridine)ruthenium(II)-cobalt(II) macrocycle system. J Am Chem Soc 101:1298–1300CrossRefGoogle Scholar
  66. 66.
    Goldsmith JI, Hudson WR, Lowry MS, Anderson TH, Bernhard S (2005) Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J Am Chem Soc 127:7502–7510CrossRefGoogle Scholar
  67. 67.
    Du P, Schneider J, Luo G, Brennessel WW, Eisenberg R (2009) Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg Chem 48:4952–4962CrossRefGoogle Scholar
  68. 68.
    Lazarides T, McCormick T, Du P, Luo G, Lindley B, Eisenberg R (2009) Making hydrogen from water using a homogeneous system without noble metals. J Am Chem Soc 131:9192–9194CrossRefGoogle Scholar
  69. 69.
    Probst B, Kolano C, Hamm P, Alberto R (2009) An efficient homogeneous intermolecular rhenium-based photocatalytic system for the production of H2. Inorg Chem 48:1836–1843CrossRefGoogle Scholar
  70. 70.
    Ozawa H, Haga M-A, Sakai K (2006) A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen. J Am Chem Soc 128:4926–4927CrossRefGoogle Scholar
  71. 71.
    Knoll JD, Arachchige SM, Brewer KJ (2011) A structurally diverse Ru(II), Pt(II) tetrametallic motif for photoinitiated electron collection and photocatalytic hydrogen production. ChemSusChem 4:252–261Google Scholar
  72. 72.
    Miao R, Zigler DF, Brewer KJ Manuscript to be submitted to Inorg ChemGoogle Scholar
  73. 73.
    Okazaki R, Masaoka S, Sakai K (2009) Photo-hydrogen-evolving activity of chloro(terpyridine)platinum(II): a single-component molecular photocatalyst. Dalton Trans 6127–6133Google Scholar
  74. 74.
    Rau S, Schäfer B, Gleich D, Anders E, Rudolph M, Friedrich M, Görls H, Henry W, Vos JG (2006) A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane. Angew Chem Int Edit 45:6215–6218CrossRefGoogle Scholar
  75. 75.
    Schwartz L, Singh PS, Eriksson L, Lomoth R, Ott S (2008) Tuning the electronic properties of Fe2(μ-arenedithiolate)(CO)6−n(PMe3)n (n = 0, 2) complexes related to the [Fe–Fe]-hydrogenase active site. CR Chim 11:875–889CrossRefGoogle Scholar
  76. 76.
    Sutin N, Creutz C, Fujita E (1997) Photo-induced generation of dihydrogen and reduction of carbon dioxide using transition metal complexes. Comment Inorg Chem 19:67–92CrossRefGoogle Scholar
  77. 77.
    Balzani V, Credi A, Venturi M (1998) Photochemistry and photophysics of coordination compounds: an extended view. Coord Chem Rev 171:3–16CrossRefGoogle Scholar
  78. 78.
    Venturi M, Credi A, Balzani V (1999) Electrochemistry of coordination compounds: an extended view. Coord Chem Rev 185:233–256CrossRefGoogle Scholar
  79. 79.
    Scandola F, Argazzi R, Bignozzi CA, Indelli MT (1994) Photoinduced energy and electron transfer in inorganic covalently linked systems. J Photochem Photobiol A 82:191–202CrossRefGoogle Scholar
  80. 80.
    Serroni S, Juris A, Campagna S, Venturi M, Denti G, Balzani V (1994) Tetranuclear bimetallic complexes of ruthenium, osmium, rhodium and iridium. Synthesis, absorption spectra, luminescence and electrochemical properties. J Am Chem Soc 116:9086–9091CrossRefGoogle Scholar
  81. 81.
    Indelli MT, Scandola F, Collin J-P, Sauvage J-P, Sour A (1996) Photoinduced electron and energy transfer in rigidly bridged Ru(II)-Rh(III) binuclear complexes. Inorg Chem 35:303–312CrossRefGoogle Scholar
  82. 82.
    Elvington M, Brewer K (2006) Photoinitiated electron collection at a metal in a rhodium-centered mixed-metal supramolecular complex. Inorg Chem 45:5242–5244CrossRefGoogle Scholar
  83. 83.
    White TA, Rangan K, Brewer KJ (2010) Synthesis, characterization, and study of the photophysics and photocatalytic properties of the photoinitiated electron collector [{(phen)2Ru(dpp)}2RhBr2](PF6)5. J Photochem Photobiol A 209:203–209CrossRefGoogle Scholar
  84. 84.
    Kalyanasundaram K, Nazeeruddin MK (1990) Photophysics and photoredox reactions of ligand-bridged binuclear polypyridyl complexes of ruthenium(II) and of their monomeric analogs. Inorg Chem 29:1888–1897CrossRefGoogle Scholar
  85. 85.
    Kew G, DeArmond K, Hanck K (1974) Electrochemistry of rhodium-dipyridyl complexes. J Phys Chem 78:727–734CrossRefGoogle Scholar
  86. 86.
    Anton DR, Crabtree RH (1983) Dibenzo[a, e]cyclooctatetraene in a proposed test for heterogeneity in catalysts formed from soluble platinum-group metal complexes. Organometallics 2:855–859CrossRefGoogle Scholar
  87. 87.
    Baba R, Nakabayashi S, Fujishima A, Honda K (1985) Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semiconductor powders. J Phys Chem 89:1902–1905CrossRefGoogle Scholar
  88. 88.
    Arachchige SM, Shaw R, White TA, Shenoy V, Tsui H-M, Brewer KJ (2011) Modification of system parameters for high turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru, Rh, Ru photoinitiated electron collector. ChemSusChem 4:514–518CrossRefGoogle Scholar
  89. 89.
    Esswein AJ, Veige AS, Nocera DG (2005) A photocycle for hydrogen production from two-electron mixed-valence complexes. J Am Chem Soc 127:16641–16651CrossRefGoogle Scholar
  90. 90.
    Esswein AJ, Dempsey JL, Nocera DG (2007) A RhII − AuII bimetallic core with a direct metal-metal bond. Inorg Chem 46:2362–2364CrossRefGoogle Scholar
  91. 91.
    Cook TR, Esswein AJ, Nocera DG (2007) Metal − halide bond photoactivation from a PtIIIAuII complex. J Am Chem Soc 129:10094–10095CrossRefGoogle Scholar
  92. 92.
    Chou M, Creutz C, Mahajan D, Sutin N, Zipp AP (1982) Nature of bis(2,2′-bipyridine)rhodium(I) in aqueous solutions. Inorg Chem 21:3989–3997CrossRefGoogle Scholar
  93. 93.
    Schwarz HA, Creutz C (1983) Reactions of tris- and bis(2,2′-bipyridine)rhodium(II) complexes in aqueous solution. Inorg Chem 22:707–713CrossRefGoogle Scholar
  94. 94.
    Fujita E, Brunschwig BS, Creutz C, Muckerman JT, Sutin N, Szalda D, van Eldik R (2006) Transition state characterization for the reversible binding of dihydrogen to Bis(2,2′-bipyridine)rhodium(I) from temperature- and pressure-dependent experimental and theoretical studies. Inorg Chem 45:1595–1603CrossRefGoogle Scholar
  95. 95.
    Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Hydrogen evolution catalyzed by cobaloximes. Acc Chem Res 42:1995–2004CrossRefGoogle Scholar
  96. 96.
    Kölle U (1992) Transition metal-catalyzed proton reduction. New J Chem 16:157–169Google Scholar
  97. 97.
    Hawecker J, Lehn JM, Ziessel R (1983) Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes. Nouv J Chim 7:271–7Google Scholar
  98. 98.
    Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S (2005) Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem Mater 17:5712–5719CrossRefGoogle Scholar
  99. 99.
    Du P, Knowles K, Eisenberg R (2008) A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J Am Chem Soc 130:12576–12577CrossRefGoogle Scholar
  100. 100.
    Dempsey JL, Winkler JR, Gray HB (2010) Kinetics of electron transfer reactions of H2-evolving cobalt diglyoxime catalysts. J Am Chem Soc 132:1060–1065CrossRefGoogle Scholar
  101. 101.
    Sakai K, Ozawa H (2007) Homogeneous catalysis of platinum(II) complexes in photochemical hydrogen production from water. Coord Chem Rev 251:2753–2766CrossRefGoogle Scholar
  102. 102.
    Ozawa H, Yokoyama Y, Haga M-A, Sakai K (2007) Syntheses, characterization, and photo-hydrogen-evolving properties of tris(2,2′-bipyridine)ruthenium(II) derivatives tethered to a cis-Pt(II)Cl2 unit: insights into the structure–activity relationship. Dalton Trans 1197–1206Google Scholar
  103. 103.
    Lei P, Hedlund M, Lomoth R, Rensmo H, Johansson O, Hammarström L (2008) The role of colloid formation in the photoinduced H2 production with a RuII-PdII supramolecular complex: a study by GC, XPS, and TEM. J Am Chem Soc 130:26–27CrossRefGoogle Scholar
  104. 104.
    Du P, Schneider J, Li F, Zhao W, Patel U, Castellano FN, Eisenberg R (2008) Bi- and terpyridyl platinum(II) chloro complexes: molecular catalysts for the photogeneration of hydrogen from water or simply precursors for colloidal platinum? J Am Chem Soc 130:5056–5058CrossRefGoogle Scholar
  105. 105.
    Masaoka S, Mukawa Y, Sakai K (2010) Frontier orbital engineering of photo-hydrogen-evolving molecular devices: a clear relationship between the H2-evolving activity and the energy level of the LUMO. Dalton Trans 39:5868–5876CrossRefGoogle Scholar
  106. 106.
    Ozawa H, Kobayashi M, Balan B, Masaoka S, Sakai K (2010) Photo-hydrogen-evolving molecular catalysts consisting of polypyridyl ruthenium(II) photosensitizers and platinum(II) catalysts: insights into the reaction mechanism. Chem Asian J 5:1860–1869CrossRefGoogle Scholar
  107. 107.
    Tschierlei S, Presselt M, Kuhnt C, Yartsev A, Pascher T, Sundström V, Karnahl M, Schwalbe M, Schäfer B, Rau S, Schmitt M, Dietzek B, Popp J (2009) Photophysics of an intramolecular hydrogen-evolving Ru-Pd photocatalyst. Chem Eur J 15:7678–7688CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of ChemistryVirginia Polytechnic Institute and State UniversityBlacksburgUSA