Skip to main content

Silicon-Based Anodes for Li-Ion Batteries

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Li-ion battery:

A family of rechargeable batteries in which lithium ions move from the negative electrode to the positive electrode during discharge, and back to the anode when charging.

Electric vehicle:

Vehicle propelled by an electric motor (or motors) powered by rechargeable battery packs.

PHEV:

Plug-in hybrid electrical vehicle. This is a hybrid vehicle with rechargeable batteries that can be restored to full charge by connecting a plug to an external electric power source.

Nanowire:

A nanowire is a nanostructure, with the diameter of the order of a nanometer and aspect ratio greater than 10:1.

CVD:

Chemical vapor deposition.

HEMM:

High-energy mechanical milling.

Coulombic efficiency:

The efficiency with which charge (electrons) is transferred in a system facilitating an electrochemical reaction.

Specific capacity:

Capacity per unit weight of a battery (Ah/kg or mAh/g).

Specific energy:

Energy per unit weight of a battery (Wh/kg).

Energy density:

Energy per unit volume of a battery (Wh/l).

Bibliography

  1. Boukamp BA, Lesh GC, Huggins RA (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128:725–729

    Article  CAS  Google Scholar 

  2. Dey AN (1971) Electrochemical, alloying of lithium in organic electrolytes. J Electrochem Soc 118:1547–1549

    Article  CAS  Google Scholar 

  3. Tirado JL (2003) Inorganic, materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Mater Sci Eng R Rep 40:103–136

    Article  Google Scholar 

  4. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  5. Kim I-S (2003) Synthesis, structure and properties of electrochemically active nanocomposites. Ph.D thesis, Carnegie Mellon University

    Google Scholar 

  6. Sharma RA, Seefurth RN (1976) Thermodynamic properties of the lithium-silicon system. J Electrochem Soc 123:1763–1768

    Article  CAS  Google Scholar 

  7. van der Marel C, Vinke GJB, van der Lugt W (1985) The phase diagram of the system lithium-silicon. Solid State Commun 54:917–919

    Article  Google Scholar 

  8. Lai S-C (1976) Solid lithium-silicon electrode. J Electrochem Soc 123:1196–1197

    Article  CAS  Google Scholar 

  9. Li H et al (2000) The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 135:181–191

    Article  CAS  Google Scholar 

  10. Limthongkul P, Jang Y-I, Dudney NJ, Chiang Y-M (2003) Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater 51:1103–1113

    Article  CAS  Google Scholar 

  11. Limthongkul P, Jang Y-I, Dudney NJ, Chiang Y-M (2003) Electrochemically-driven solid-state amorphization in lithium-metal anodes. J Power Sources 119–121:604–609

    Article  CAS  Google Scholar 

  12. Maranchi JP, Hepp AF, Kumta PN (2003) High capacity reversible silicon thin film anodes lithium ion batteries. Electrochem Solid-State Lett 6:A198–A201

    Article  CAS  Google Scholar 

  13. Ryu JH, Kim JW, Sung Y-E, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid-State Lett 7:A306–A309

    Article  CAS  Google Scholar 

  14. Li J, Dahn JR (2007) An in situ x-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc 154:A156–A161

    Article  CAS  Google Scholar 

  15. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7:A93–A96

    Article  CAS  Google Scholar 

  16. Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838–A842

    Article  CAS  Google Scholar 

  17. Datta MK, Kumta PN (2009) In situ electrochemical synthesis of lithiated silicon-carbon based composites anode materials for lithium ion batteries. J Power Sources 194:1043–1052

    Article  CAS  Google Scholar 

  18. Wang W, Kumta PN (2010) Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 4:2233–2241

    Article  CAS  Google Scholar 

  19. Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154:A103–A108

    Article  CAS  Google Scholar 

  20. Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR (2001) Colossal reversible volume changes in lithium alloys. Electrochem Solid-State Lett 4:A137–A140

    Article  CAS  Google Scholar 

  21. Park MH et al (2009) Silicon nanotube battery anodes. Nano Lett 9:3844–3847

    Article  CAS  Google Scholar 

  22. Datta MK, Kumta PN (2006) Silicon and carbon based composite anodes for lithium ion batteries. J Power Sources 158:557–563

    Article  CAS  Google Scholar 

  23. Sandia National Laboratories. Sandia National Laboratories News Releases. Sandia National Laboratories, Livermore, CA, 6 March 2003

    Google Scholar 

  24. Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039

    Article  CAS  Google Scholar 

  25. Larcher D et al (2007) Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J Mater Chem 17:3759–3772

    Article  CAS  Google Scholar 

  26. Timmons A et al (2007) Studies of Si[sub 1 – x]C[sub x] electrode materials prepared by high-energy mechanical milling and combinatorial sputter deposition. J Electrochem Soc 154:A865–A874

    Article  CAS  Google Scholar 

  27. Huggins RA (1999) Lithium, alloy negative electrodes. J Power Sources 81–82:13–19

    Article  Google Scholar 

  28. Mao O et al (1999) Active/inactive nanocomposites as anodes for Li-ion batteries. Electrochem Solid-State Lett 2:3–5

    Article  CAS  Google Scholar 

  29. Weydanz WJ, Wohlfahrt-Mehrens M, Huggins RA (1999) A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries. J Power Sources 81–82:237–242

    Article  Google Scholar 

  30. Courtney IA, McKinnon WR, Dahn JR (1999) On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J Electrochem Soc 146:59–68

    Article  CAS  Google Scholar 

  31. Mayo MJ (1997) High, and low temperature superplasticity in nanocrystalline materials. Nanostruct Mater 9:717–726

    Article  CAS  Google Scholar 

  32. Wang W (2009) Silicon Based Nanocomposites as Lithium-ion Battery Anodes. PhD dissertation, Carnegie Mellon University

    Google Scholar 

  33. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397

    Article  CAS  Google Scholar 

  34. Hwang S-M et al (2001) Lithium insertion in SiAg powders produced by mechanical alloying. Electrochem Solid-State Lett 4:A97–A100

    Article  CAS  Google Scholar 

  35. Kim H, Choi J, Sohn H-J, Kang T (1999) The insertion mechanism of lithium into Mg[sub 2]Si anode material for Li-ion batteries. J Electrochem Soc 146:4401–4405

    Article  CAS  Google Scholar 

  36. Kim I-S, Kumta PN, Blomgren GE (2000) Si/TiN nanocomposites novel anode materials for Li-ion batteries. Electrochem Solid-State Lett 3:493–496

    Article  CAS  Google Scholar 

  37. Kim I-S, Blomgren GE, Kumta PN (2004) Si-SiC nanocomposite anodes synthesized using high-energy mechanical milling. J Power Sources 130:275–280

    Article  CAS  Google Scholar 

  38. Kim I-S, Blomgren GE, Kumta PN (2003) Nanostructured Si/TiB2 composite anodes for Li-ion batteries. Electrochem Solid-State Lett 6:A157–A161

    Article  CAS  Google Scholar 

  39. Wang CS, Wu GT, Zhang XB, Qi ZF, Li WZ (1998) Lithium insertion in carbon-silicon composite materials produced by mechanical milling. J Electrochem Soc 145:2751–2758

    Article  CAS  Google Scholar 

  40. Gross KJ, Wang JCF, Roberts GA (2004) Synthesis of carbon/silicon composites. US Patent 2004/137,327 (2004)

    Google Scholar 

  41. Kim I-S, Kumta PN (2004) High capacity Si/C nanocomposite anodes for Li-ion batteries. J Power Sources 136:145–149

    Article  CAS  Google Scholar 

  42. Wilson AM, Reimers JN, Fuller EW, Dahn JR (1994) Lithium insertion in pyrolyzed siloxane polymers. Solid State Ionics 74:249–254

    Article  CAS  Google Scholar 

  43. Yang J et al (2003) Si/C composites for high capacity lithium storage materials. Electrochem Solid-State Lett 6:A154–A156

    Article  CAS  Google Scholar 

  44. Xie J, Cao GS, Zhao XB (2004) Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells. Mater Chem Phys 88:295–299

    Article  CAS  Google Scholar 

  45. Holzapfel M et al (2005) Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries. Electrochem Solid-State Lett 8:A516–A520

    Article  CAS  Google Scholar 

  46. Holzapfel M, Buqa H, Scheifele W, Novak P, Petrat F-M (2005) A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem Commun 1566–1568

    Google Scholar 

  47. Dimov N, Fukuda K, Umeno T, Kugino S, Yoshio M (2003) Characterization of carbon-coated silicon: structural evolution and possible limitations. J Power Sources 114:88–95

    Article  CAS  Google Scholar 

  48. Liu W-R et al (2005) Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J Electrochem Soc 152:A1719–A1725

    Article  CAS  Google Scholar 

  49. Yu M-F, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552

    Article  CAS  Google Scholar 

  50. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013

    Article  CAS  Google Scholar 

  51. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  CAS  Google Scholar 

  52. Roche S (2000) Carbon nanotubes: exceptional mechanical and electronic properties. Ann Chim Sci Matériaux 25:529–532

    Article  CAS  Google Scholar 

  53. Zhao Q, Nardelli MB, Bernholc J (2002) Ultimate strength of carbon nanotubes: a theoretical study. Phys Rev B 65:144105

    Article  CAS  Google Scholar 

  54. Demczyk BG et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178

    Article  Google Scholar 

  55. Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  CAS  Google Scholar 

  56. Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941

    Article  CAS  Google Scholar 

  57. Frank S et al (1998) Carbon nanotube quantum resistors. Science 280:1744–1746

    Article  CAS  Google Scholar 

  58. Shu J, Li H, Yang R, Shi Y, Huang X (2006) Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem Commun 8:51–54

    Article  CAS  Google Scholar 

  59. Wang W, Kumta PN (2007) Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. J Power Sources 172:650–658

    Article  CAS  Google Scholar 

  60. Si Q et al (2010) A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries. J Power Sources 195:1720–1725

    Article  CAS  Google Scholar 

  61. Guo JC, Sun A, Wang CS (2010) A porous silicon-carbon anode with high overall capacity on carbon fiber current collector. Electrochem Commun 12:981–984

    Article  CAS  Google Scholar 

  62. Lee J et al (2009) Effect of randomly networked carbon nanotubes in silicon-based anodes for lithium-ion batteries. J Electrochem Soc 156:A905–A910

    Article  CAS  Google Scholar 

  63. Jang S-M, Miyawaki J, Tsuji M, Mochida I, Yoon S-H (2009) The preparation of a novel Si-CNF composite as an effective anodic material for lithium-ion batteries. Carbon 47:3383–3391

    Article  CAS  Google Scholar 

  64. Yang J, Winter M, Besenhard JO (1996) Small particle size multiphase Li-alloy anodes for lithium-ionbatteries. Solid State Ionics 90:281–287

    Article  CAS  Google Scholar 

  65. Yang J, Takeda Y, Imanishi N, Ichikawa T, Yamamoto O (2000) SnSbx-based composite electrodes for lithium ion cells. Solid State Ionics 135:175–180

    Article  CAS  Google Scholar 

  66. Yang J, Takeda Y, Imanishi N, Yamamoto O (1999) Ultrafine Sn and SnSb0.14 Powders for lithium storage matrices in lithium-ion batteries. J Electrochem Society 146:4009–4013

    Article  CAS  Google Scholar 

  67. Huggins R, Nix W (2000) Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Solid State Ionics 6:57–63

    CAS  Google Scholar 

  68. Li H, Huang X, Chen L, Wu Z, Liang Y (1999) A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem Solid-State Lett 2:547–549

    Article  CAS  Google Scholar 

  69. Beaulieu LY, Dahn JR (2000) The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying. J Electrochem Soc 147:3237–3241

    Article  CAS  Google Scholar 

  70. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Article  CAS  Google Scholar 

  71. Graetz J, Ahn CC, Yazami R, Fultz B (2003) Highly reversible lithium storage in nanostructured silicon. Electrochem Solid-State Lett 6:A194–A197

    Article  CAS  Google Scholar 

  72. Maranchi JP, Hepp AF, Evans AG, Nuhfer NT, Kumta PN (2006) Interfacial properties of the a-Si/Cu:active–inactive thin-film anode system for lithium-ion batteries. J Electrochem Soc 153:A1246–A1253

    Article  CAS  Google Scholar 

  73. Kim J-B, Lee H-Y, Lee K-S, Lim S-H, Lee S-M (2003) Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries. Electrochem Commun 5:544–548

    Article  CAS  Google Scholar 

  74. Kim Y-L et al (2003) Electrochemical characteristics of Co-Si alloy and multilayer films as anodes for lithium ion microbatteries. Electrochim Acta 48:2593–2597

    Article  CAS  Google Scholar 

  75. Lee KL, Jung JY, Lee SW, Moon HS, Park JW (2004) Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J Power Sources 129:270–274

    Article  CAS  Google Scholar 

  76. Kim YL, Sun YK, Lee SM (2008) Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochim Acta 53:4500–4504

    Article  CAS  Google Scholar 

  77. Yonezu I, Tarui H, Yoshimura S, Fujitani S, Nohma T (2004) Abstracts of the 12th International Meeting on Lithium Batteries, vol 58. Electrochemical Society, Nara, Japan, 2004

    Google Scholar 

  78. Lee JK, Smith KB, Hayner CM, Kung HH (2010) Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem Commun 46:2025–2027

    Article  CAS  Google Scholar 

  79. Chou SL et al (2010) Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem Commun 2:303–306

    Article  CAS  Google Scholar 

  80. Chan CK et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  CAS  Google Scholar 

  81. Yu DP et al (2001) Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism. Physica E 9:305–309

    Article  CAS  Google Scholar 

  82. Kolb FM et al (2004) Analysis of silicon nanowires grown by combining SiO evaporation with the VLS mechanism. J Electrochem Soc 151:G472–G475

    Article  CAS  Google Scholar 

  83. Chang JB et al (2006) Ultrafast growth of single-crystalline Si nanowires. Mater Lett 60:2125–2128

    Article  CAS  Google Scholar 

  84. Zhang JG et al (2010) Vapor-induced solid–liquid–solid process for silicon-based nanowire growth. J Power Sources 195:1691–1697

    Article  CAS  Google Scholar 

  85. Kim H, Han B, Choo J, Cho J (2008) Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem Int Ed 47:10151–10154

    Article  CAS  Google Scholar 

  86. Zheng Y, Yang J, Wang JL, NuLi YN (2007) Nano-porous Si/C composites for anode material of lithium-ion batteries. Electrochim Acta 52:5863–5867

    Article  CAS  Google Scholar 

  87. Xiao J et al (2010) Stabilization of silicon anode for Li-ion batteries. J Electrochem Soc 157:A1047–A1051

    Google Scholar 

  88. Ma H et al (2007) Nest-like silicon nanospheres for high-capacity lithium storage. Adv Mater 19:4067–4070

    Article  CAS  Google Scholar 

  89. Magasinski A et al (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mat 9:353–358

    Article  CAS  Google Scholar 

  90. Chen ZH, Christensen L, Dahn JR (2003) Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers. Electrochem Commun 5:919–923

    Article  CAS  Google Scholar 

  91. Chen ZH, Christensen L, Dahn JR (2003) Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. J Electrochem Soc 150:A1073–A1078

    Article  CAS  Google Scholar 

  92. Chen ZH, Christensen L, Dahn JR (2004) Mechanical and electrical properties of poly(vinylidene fluoride-tetrafluoroethylene-propylene)/super-S carbon black swelled in liquid solvent as an electrode binder for lithium-ion batteries. J Appl Polym Sci 91:2958–2965

    Article  CAS  Google Scholar 

  93. Liu WR, Yang MH, Wu HC, Chiao SM, Wu NL (2005) Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem Solid-State Lett 8:A100–A103

    Article  CAS  Google Scholar 

  94. Li J, Lewis RB, Dahn JR (2007) Sodium carboxymethyl cellulose – a potential binder for Si negative electrodes for Li-ion batteries. Electrochem Solid-State Lett 10:A17–A20

    Article  CAS  Google Scholar 

  95. Dimov N, Xia Y, Yoshio M (2007) Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features. J Power Sources 171:886–893

    Article  CAS  Google Scholar 

  96. Lestrie B, Bahri S, Sandu I, Roue L, Guyomard D (2007) On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem Commun 9:2801–2806

    Article  CAS  Google Scholar 

  97. Key B et al (2009) Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc 131:9239–9249

    Article  CAS  Google Scholar 

  98. Buqa H, Holzapfel M, Krumeich F, Veit C, Novak P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617–622

    Article  CAS  Google Scholar 

  99. Xu YH, Yin GP, Ma YL, Zuo PJ, Cheng XQ (2010) Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder. J Power Sources 195:2069–2073

    Article  CAS  Google Scholar 

  100. Hochgatterer NS et al (2008) Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11:A76–A80

    Article  CAS  Google Scholar 

  101. Guo JC, Wang CS (2010) A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Chem Commun 46:1428–1430

    Article  CAS  Google Scholar 

  102. Beattie SD, Larcher D, Morcrette M, Simon B, Tarascon JM (2008) Si electrodes for Li-ion batteries – a new way to look at an old problem. J Electrochem Soc 155:A158–A163

    Article  CAS  Google Scholar 

  103. Zheng Y, Yang J, Tao L, Nuli YN, Wang JL (2007) Study of nano-porous Si/Graphite/C composite anode materials for Li-ion batteries. Chin J Inorg Chem 23:1882–1886

    CAS  Google Scholar 

  104. Chen LB, Xie XH, Xie JY, Wang K, Yang J (2006) Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. J Appl Electrochem 36:1099–1104

    Article  CAS  Google Scholar 

  105. Choi NS, Yew KH, Choi WU, Kim SS (2008) Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. J Power Sources 177:590–594

    Article  CAS  Google Scholar 

  106. Liu G (2010) DOE hydrogen program and vehicle technologies program annual merit review and peer evaluation meeting. Department of Energy, Office of Energy Efficiency & Renewable Energy, Washington DC, 2010

    Google Scholar 

  107. Zhang JG, Liu J (2010) DOE hydrogen program and vehicle technologies program annual merit review and peer evaluation meeting. Department of Energy, Office of Energy Efficiency & Renewable Energy, Washington DC, 2010

    Google Scholar 

  108. Carmer JLG, Morales J, Sanchez L (2008) Nano-Si/cellulose composites as anode materials for lithium-ion batteries. Electrochem Solid-State Lett 11:A101–A104

    Article  CAS  Google Scholar 

  109. Kulova TL, Skundin AM (2010) Elimination of irreversible capacity of amorphous silicon: direct contact of the silicon and lithium metal. Rus J Electrochem 46:470–475

    Article  CAS  Google Scholar 

  110. Urbonaite S, Baglien I, Ensling D, Edstrom K (2010) Effect of ethanol-assisted electrode fabrication on the performance of silicon anodes. J Power Sources 195:5370–5373

    Article  CAS  Google Scholar 

  111. Doh CH et al (2006) Synthesis of silicon-carbon by polyaniline coating and electrochemical properties of the Si-C vertical bar Li cell. Bull Korean Chem Soc 27:1175–1180

    Article  CAS  Google Scholar 

  112. Choi NS et al (2006) Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 161:1254–1259

    Article  CAS  Google Scholar 

  113. Chen LB, Wang K, Xie XH, Xie JY (2007) Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J Power Sources 174:538–543

    Article  CAS  Google Scholar 

  114. Han GB, Ryou MH, Cho KY, Lee YM, Park JK (2010) Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode. J Power Sources 195:3709–3714

    Article  CAS  Google Scholar 

  115. Baggetto L et al (2009) On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries. J Power Sources 189:402–410

    Article  CAS  Google Scholar 

  116. Arie AA, Chang W, Lee JK (2010) Electrochemical characteristics of semi conductive silicon anode for lithium polymer batteries. J Electroceramics 24:308–312

    Article  CAS  Google Scholar 

  117. Inose T, Watanabe D, Morimoto H, Tobishima SI (2006) Influence of glyme-based nonaqueous electrolyte solutions on electrochemical properties of Si-based anodes for rechargeable lithium cells. J Power Sources 162:1297–1303

    Article  CAS  Google Scholar 

  118. Choi NS, Yew KH, Kim H, Kim SS, Choi WU (2007) Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte. J Power Sources 172:404–409

    Article  CAS  Google Scholar 

  119. Lux SF et al (2010) Li-ion anodes in air-stable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries. Int J Energy Res 34:97–106

    Article  CAS  Google Scholar 

  120. Cui LF, Yang Y, Hsu CM, Cui Y (2009) Carbon – silicon core – shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9:3370–3374

    Article  CAS  Google Scholar 

  121. Yang Y et al (2010) New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett 10:1486–1491

    Article  CAS  Google Scholar 

  122. Arrebola JC et al (2009) Combining 5 V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries. Electrochem Commun 11:1061–1064

    Article  CAS  Google Scholar 

  123. Lee K-L, Jung J-Y, Lee S-W, Moon H-S, Park J-W (2004) Electrochemical characteristics and cycle performance of LiMn2O4/a-Si microbattery. J Power Sources 130:241–246

    Article  CAS  Google Scholar 

  124. Yin J et al (2006) Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries. J Electrochem Soc 153:A472–A477

    Article  CAS  Google Scholar 

  125. Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D (2007) Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem Commun 9:796–800

    Article  CAS  Google Scholar 

  126. Yang H et al (2007) Amorphous Si film anode coupled with LiCoO2 cathode in Li-ion cell. J Power Sources 174:533–537

    Article  CAS  Google Scholar 

  127. Christensen J (2010) Modeling diffusion-induced stress in Li-Ion cells with porous electrodes. J Electrochem Soc 157:A366–A380

    Article  CAS  Google Scholar 

  128. Gaines L, a.C., Roy in http://www.transportation.anl.gov/pdfs/TA/149.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Graff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Zhang, JG. et al. (2012). Silicon-Based Anodes for Li-Ion Batteries . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_496

Download citation

Publish with us

Policies and ethics