Definition of the Subject
In the broad sense, photosynthetically active radiation (PAR) is the part of electromagnetic radiation that can be used as the source of energy for photosynthesis by green plants. Technically, it is defined as radiation in the spectral range from 400 to 700 nm [1, 2]. It is expressed either in terms of photosynthetic photon flux density (PPFD , μmol photons m−2 s−1), since photosynthesis is a quantum process, or in terms of photosynthetic radiant flux density (PAR irradiance, W m−2), more suitable for energy balance studies. A fundamental term in the quantification of light used by plants in the photosynthesis process is the fraction of absorbed photosynthetically active radiation (fAPAR) calculated as the ratio of absorbed to total incident PAR in a vegetation canopy. This variable is widely used in vegetation functioning models at a range of spatial scales from the plant to the globe as an indicator of the amount of energy...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Abbreviations
- Photosynthetically active radiation (PAR):
-
The part of electromagnetic radiation that can be used as the source of energy for photosynthesis by green plants, measured as PAR irradiance or PPFD.
- PAR waveband:
-
Spectral region for electromagnetic radiation defined by the wavelength limits of 400–700 nm.
- PAR irradiance:
-
Radiant flux density, or the radiative energy received by unit surface area in unit time, carried by photons in the PAR waveband.
- Photosynthetic photon flux density (PPFD):
-
The number of photons with wavelengths in the PAR waveband passing through unit surface area in unit time; synonymous to PAR quantum flux.
- Photosynthetic action spectrum:
-
The spectral dependence of photosynthetic productivity per unit absorbed energy, usually plotted in relative units.
- IPAR:
-
Intercepted PAR, or the amount of incident PAR not directly transmitted to the ground by a vegetation canopy.
- APAR:
-
Absorbed PAR, the amount of incident PAR absorbed by a vegetation canopy.
- fIPAR:
-
The fraction of incident PAR not directly transmitted to the ground by a vegetation canopy.
- fAPAR:
-
The fraction of incident PAR absorbed by a vegetation canopy.
- Global PAR:
-
The sum of diffuse and direct PAR: total PAR falling on a horizontal surface.
- Ideal PAR energy sensor:
-
PAR sensor with output proportional to PAR irradiance.
- Ideal PAR quantum sensor:
-
PAR sensor with output proportional to PPFD.
- Spectral error:
-
Broadband radiation measurement errors arising from the deviation of the predicted radiation spectrum from the actual one.
- Radiative transfer theory (RTT):
-
The mathematical framework for describing the radiation field in an absorbing, scattering, and emitting medium based on radiation beams traveling in straight lines.
Bibliography
McCree KJ (1972) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9(3–4):191–216
McCree KJ (1972) Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric Meteorol 10(6):443–453
Monteith JL (1977) Climate and efficiency of crop production in Britain. Philos Trans R Soc Lond B Biol Sci 281(980):277–294
Shibles R (1976) Terminology pertaining to photosynthesis. Crop Sci 16(3):437–439
CIE (1993) Terminology for photosynthetically active radiation for plants. CIE Collect Photobiol Photochem 106(6):42–46, ISBN 3900734461
McCree KJ (1965) Light measurements in plant growth investigations. Nature 206(4983):527–528
Inada K (1976) Action spectra for photosynthesis in higher-plants. Plant Cell Physiol 17(2):355–365
Barnes C, Tibbitts T, Sager J, Deitzer G, Bubenheim D, Koerner G, Bugbee B (1993) Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux. Hortscience 28(12):1197–1200
Bonhomme R (2000) Beware of comparing RUE values calculated from PAR vs solar radiation or absorbed vs intercepted radiation. Field Crops Res 68(3):247–252, cited By (since 1996) 16
Sinclair TR, Muchow RC (1999) Radiation use efficiency. Adv Agron 65:215–265
Ross J, Sulev M (2000) Sources of errors in measurements of PAR. Agric For Meteorol 100(2–3):103–125
Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Mededel Landbouwhogeschool Wageningen 59:1–68
Nichiporovich A (1960) Conference on measurement of visible radiation in plant physiology. Sov Plant Physiol 7:744–747
McCree K (1966) A solarimeter for measuring photosynthetically active radiation. Agric Meteorol 3(5–6):353–366, cited By (since 1996) 20
Ross J (1975) Radiative transfer in plant communities. In: Monteith JL (ed) Vegetation and the atmosphere, vol 1. Academic, London/New York, pp 13–55
ISO (2004) Spatial distribution of daylight. CIE standard general sky. ISO 15469:2004/CIE 011:2003. ISO, 2004
LI-COR (1986) LI-COR radiation sensors. instruction manual. Publ. no 8609-56. Lincoln, Nebraska
LI-COR (1991) LI-COR radiation measurement instruments. Lincoln, Nebraska
Pearcy R (1989) Radiation and light measurements. In: Pearcy R, Ehleringer J, Mooney H, Rundel P (eds) Plant physiological ecology. Chapman & Hall, New York, pp 97–116, ch. 6
Ross J, Sulev M, Saarelaid P (1998) Statistical treatment of the PAR variability and its application to willow coppice. Agric For Meteorol 91(1–2):1–21
Norman JM, Tanner CB, Thurtell GW (1969) Photosynthetic light sensor for measurements in plant canopies. Agron J 61(6):840–843
Britton CM, Dodd JD (1976) Relationships of photosynthetically active radiation and shortwave irradiance. Agric Meteorol 17(1):1–7
Howell TA, Meek DW, Hatfield JL (1983) Relationship of photosynthetically active radiation to shortwave radiation in the San-Joaquin Valley. Agric Meteorol 28(2):157–175
Alados I, FoyoMoreno I, Alados-Arboledas L (1996) Photosynthetically active radiation: Measurements and modelling. Agric For Meteorol 78(1–2):121–131
Fielder P, Comeau P (2000) Construction and testing of an inexpensive PAR sensor. Ministry of Forests Research, British Columbia, Working Paper 53/2000
Rodskjer N, Kornher A (1971) Über die bestimmung der strahlungsenergie im wellen-längenbereich von 0, 3–0, 7 [mu] in pflanzenbeständen. Agric Meteorol 8:139–150
Slomka J, Slomka K (1986) Participation of photosynthetically active radiation in global radiation. In: Publications of the Institute of Geophysics, Polish Academy of Sciences, p 197
Stanhill G, Fuchs M (1977) Relative flux-density of photosynthetically active radiation. J Appl Ecol 14(1):317–322
Stigter CJ, Musabilha VMM (1982) The conservative ratio of photosynthetically active to total radiation in the tropics. J Appl Ecol 19(3):853–858
Blackburn WJ, Proctor JTA (1983) Estimating photosynthetically active radiation from measured solar irradiance. Sol Energy 31(2):233–234
Hansen V (1984) Spectral distribution of solar-radiation on clear days - a comparison between measurements and model estimates. J Climate Appl Meteorol 23(5):772–780
Rao CRN (1984) Photosynthetically active components of global solar-radiation – measurements and model computations. Arch Meteorol Geophys Bioclimatol B Theor Appl Climatol 34(4):353–364
Spitters CJT, Toussaint HAJM, Goudriaan J (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. 1. components of incoming radiation. Agric For Meteorol 38(1–3):217–229
Tooming H, Niilisk H (1967) Transition coefficients from integrated radiation to photosynthetic active radiation (PAR) under field conditions. In: Phytoactinometrical investigations of plant canopy (in Russian). Valgus Publishers, Tallinn, pp 140–149
Karalis JD (1989) Characteristics of direct photosynthetically active radiation. Agric For Meteorol 48(3–4):225–234
Jacovides CP, Kallos GB, Steven MD (1993) Spectral band resolution of solar-radiation in Athens, Greece. Int J Climatol 13(6):689–697
Stephens K, Strickland JDH (1962) Use of a thermopile radiometer for measuring the attenuation of photosynthetically active radiation in the sea. Limnol Oceanogr 7(4):485–487
Mims FM (2003) A 5-year study of a new kind of photosynthetically active radiation sensor. Photochem Photobiol 77(1):30–33
Mõttus M, Ross J, Sulev M (2001) Experimental study of ratio of PAR to direct integral solar radiation under cloudless conditions. Agric For Meteorol 109(3):161–170
Grant RH, Heisler GM, Gao W (1996) Photosynthetically-active radiation: Sky radiance distributions under clear and overcast conditions. Agric For Meteorol 82(1–4):267–292
Grant R, Heisler G (1997) Obscured overcast sky radiance distributions for ultraviolet and photosynthetically active radiation. J Appl Meteorol 36(10):1336–1345
McArthur LJB (2004) Baseline Surface Radiation Network (BSRN) operations manual, version 2.1. Technical Report WMO/TD-No. 879, World Climate Research Programme Baseline Surface Radiation Network. http://www.bsrn.awi.de/fileadmin/user_upload/Home/Publications/McArthur.pdf
Michalsky JJ, Harrison LC, Berkheiser WE (1995) Cosine response characteristics of some radiometric and photometric sensors. Sol Energy 54(6):397–402
Su WY, Charlock TP, Rose FG, Rutan D (2007) Photosynthetically active radiation from Clouds and the Earth’s Radiant Energy System (CERES) products. J Geophys Res Biogeosci 112(G2):G02022
BSRN (2005) UV and PAR measurement. Report of the eighth session of the Baseline Surface Radiation Network (BSRN) workshop and scientific review meeting (Exeter, UK, 26–30 July 2004), vol 4/2005, pp 14–16. World Climate Research Programme, Informal Report 4/2005, 2005
Gueymard CA (2008) REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – validation with a benchmark dataset. Sol Energy 82(3):272–285
Alados I, Alados-Arboledas L (Jan 1999) Direct and diffuse photosynthetically active radiation: measurements and modelling. Agric For Meteorol 93:27–38
Bosch JL, Lopez G, Batlles FJ (Jan 2009) Global and direct photosynthetically active radiation parameterizations for clear-sky conditions. Agric For Meteorol 149:146–158
Perez R, Ineichen P, Seals R, Michalsky J, Stewart R (1990) Modeling daylight availability and irradiance components from direct and global irradiance. Sol Energy 44(5):271–289
Alados I, Olmo FJ, Foyo-Moreno I, Alados-Arboledas L (Apr 2000) Estimation of photosynthetically active radiation under cloudy conditions. Agric For Meteorol 102:39–50
Alados-Arboledas L, Olmo FJ, Alados I, Perez M (2000) Parametric models to estimate photosynthetically active radiation in Spain. Agric For Meteorol 101(2–3):187–201
Jacovides CP, Timbios F, Asimakopoulos DN, Steven MD (1997) Urban aerosol and clear skies spectra for global and diffuse photosynthetically active radiation. Agric For Meteorol 87(2–3):91–104
Papaioannou G, Papanikolaou N, Retalis D (1993) Relationships of photosynthetically active radiation and shortwave irradiance. Theor Appl Climatol 48(1):23–27
Jacovides CP, Tymvios FS, Asimakopoulos DN, Theofilou KM, Pashiardes S (2003) Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theor Appl Climatol 74(3–4):227–233
Wang Q, Kakubari Y, Kubota M, Tenhunen J (Jan 2007) Variation on PAR to global solar radiation ratio along altitude gradient in Naeba Mountain. Theor Appl Climatol 87:239–253
McCree K (1981) Photosynthetically active radiation. In: Pirson A, Zimmermann M (eds) Encyclopedia of plant physiology, vol 12A. Springer, Berlin, Heidelberg, pp 41–55
Dye DG (2004) Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions. J Geophys Res Atmos 109(D10):D10203
Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge/England
Buiteveld H, Hakvoort JH, Donze M (Oct 1994) Optical properties of pure water. In: Jaffe JS (ed) Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 2258 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp 174–183
Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization. J Geophys Res Oceans 100(C7):13321–13332
Bricaud A, Stramski D (1990) Spectral absorption-coefficients of living phytoplankton and nonalgal biogenous matter - a comparison between the Peru upwelling area and the Sargasso sea. Limnol Oceanogr 35(3):562–582
Jerlov NG (1976) Marine optics. Elsevier, Amsterdam/New York
Austin RW, Petzold TJ (1986) Spectral dependence of the diffuse attenuation coefficient of light in ocean waters. Opt Eng 25(3):471–479
Reinart A, Herlevi A (1999) Diffuse attenuation coefficient in some Estonian and Finnish lakes. Proc Estonian Acad Sci Biol Ecol 48(4):267–283
Reinart A, Arst H, Blanco-Sequeiros A, Herlevi A (1998) Relation between underwater irradiance and quantum irradiance in dependence on water transparency at different depths in the water bodies. J Geophys Res Oceans 103(C4):7749–7752
Dera J (1992) Marine physics. Elsevier, Amsterdam
Ehn J, Granskog MA, Reinart A, Erm A (2004) Optical properties of melting land-fast sea ice and underlying seawater in Santala Bay, Gulf of Finland. J Geophys Res Oceans 109(C9):C09003
Morel A, Smith RC (1974) Relation between total quanta and total energy for aquatic photosynthesis. Limnol Oceanogr 19(4):591–600
Aas E (1971) Natural history of Hardangerfjord. 9. Irradiance in Hardangerfjorden 1967. Sarsia 46:59–78
Ohmura A, Dutton EG, Forgan B, Frohlich C, Gilgen H, Hegner H, Heimo A, Konig-Langlo G, McArthur B, Muller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline surface radiation network (BSRN/WCRP): New precision radiometry for climate research. Bull Am Meteorol Soc 79(10):2115–2136
Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434
Friend AD, Arneth A, Kiang NY, Lomas M, Ogee J, Rodenbeckk C, Running SW, Santaren JD, Sitch S, Viovy N, Woodward FI, Zaehle S (2007) FLUXNET and modelling the global carbon cycle. Glob Change Biol 13(3):610–633
Augustine JA, DeLuisi JJ, Long CN (2000) SURFRAD - a national surface radiation budget network for atmospheric research. Bull Am Meteorol Soc 81(10):2341–2357
Hari P, Andreae MO, Kabat P, Kulmala M (2009) A comprehensive network of measuring stations to monitor climate change. Boreal Environ Res 14(4):442–446
Jacquemoud S, Baret F (1990) Prospect - a model of leaf optical-properties spectra. Remote Sens Environ 34(2):75–91
Feret JB, Francois C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le Maire G, Jacquemoud S (2008) PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 112(6):3030–3043
Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2–3):337–354
Martin G, Josserand SA, Bornman JF, Vogelmann TC (1989) Epidermal focusing and the light microenvironment within leaves of medicago-sativa. Physiol Plant 76(4):485–492
Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149(1):78–90
Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432
Emerson R (1929) The relation between maximum rate of photosynthesis and concentration of chlorophyll. J Gen Physiol 12(5):609–622
Peñuelas J, Baret F, Filella I (1995) Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 31(2):221–230
Moya I, Camenen L, Evain S, Goulas Y, Cerovic ZG, Latouche G, Flexas J, Ounis A (2004) A new instrument for passive remote sensing 1, measurements of sunlight-induced chlorophyll fluorescence. Remote Sens Environ 91(2):186–197
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 51(345):659–668
Ross J (1981) The radiation regime and architecture of plant stands. Dr. W. Junk Publishers, The Hague
Myneni R, Ross JE (1991) Photon-vegetation interactions. Springer, Berlin, Heidelberg
Malenovsky Z, Mishra KB, Zemek F, Rascher U, Nedbal L (2009) Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. J Exp Bot 60(11):2987–3004
Monsi M, Saeki T (1953) Über den lichtfaktor in den pflanzengesellschaften und seine bedeutung für die stoffproduktion. Jpn J Bot 14:22–52
Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95(3):549–567
Lieffers V, Messier C, Stadt K, Gendron F, Comeau P (1999) Predicting and managing light in the understory of boreal forests. Can J For Res 29(6):796–811
Campbell GS, Norman JM (1998) Introduction to environmental biophysics, 2nd edn. Springer, New York
Breda NJJ (Nov 2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417
Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (Jan 2004) Review of methods for in situ leaf area index determination - Part I theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35
Ni WG, Li XW, Woodcock CE, Roujean JL, Davis RE (Dec 1997) Transmission of solar radiation in boreal conifer forests: Measurements and models. J Geophys Res Atmos 102:29555–29566
Mõttus M, Sulev M (2006) Radiation fluxes and canopy transmittance: Models and measurements inside a willow canopy. J Geophys Res Atmos 111(D2):D02109
Chelle M (2006) Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption? Ecol Modell 198(1–2):219–228
Asner GP, Wessman CA, Schimel DS, Archer S (Mar 1998) Variability in leaf and litter optical properties: Implications for BRDF model inversions using AVHRR, MODIS, and MISR. Remote Sens Environ 63:243–257
Baldocchi D, Collineau S (1994) The physical nature of solar radiation in heterogeneous canopies: spatial and temporal attributes. In: Exploitation of environmental heterogeneity by plants: ecophysiological processes above- and below ground. Academic, San Diego, pp 21–71
Reifsnyder W, Furnival G, Horowitz J (1971–1972) Spatial and temporal distribution of solar radiation beneath forest canopies. Agric Meteorol 9:21–37
DePury DGG, Farquhar GD (May 1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557
Oker-Blom P (1985) Photosynthesis of a Scots pine shoot – simulation of the irradiance distribution and photosynthesis of a shoot in different radiation-fields. Agric For Meteorol 34(1):31–40
Myneni RB, Asrar G, Wall GW, Kanemasu ET, Impens I (1986) Canopy architecture, irradiance distribution on leaf surfaces and consequent photosynthetic efficiencies in heterogeneous plant canopies. 2 results and discussion. Agric For Meteorol 37(3):205–218
Stenberg P (1998) Implications of shoot structure on the rate of photosynthesis at different levels in a coniferous canopy using a model incorporating grouping and penumbra. Funct Ecol 12(1):82–91
Gu LH, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res Atmos 107(D5–6):4050
Roderick ML, Farquhar GD, Berry SL, Noble IR (Sept 2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30
Gu LH, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 299(5615):2035–2038
Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (Apr 2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017
Vesala T, Markkanen T, Palva L, Siivola E, Palmroth S, Hari P (Feb. 2000) Effect of variations of PAR on CO2 exchange estimation for Scots pine. Agric For Meteorol 100:337–347
Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric For Meteorol 87(2–3):179–200
Schaepman-Strub G, Schaepman ME, Painter TH, Dangel S, Martonchik JV (2006) Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sens Environ 103(1):27–42
Nicodemus FE (1970) Reflectance nomenclature and directional reflectance and emissivity. Appl Opt 9(6):1474–1475
Baret F, Guyot G (1991) Potentials and limits of vegetation indexes for LAI and APAR assessment. Remote Sens Environ 35(2–3):161–173
McCallum I, Wagner W, Schmullius C, Shvidenko A, Obersteiner M, Fritz S, Nilsson S (2010) Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote Sens Environ 114(5):941–949
Asrar G (1989) Theory and applications of optical remote sensing. Wiley, New York
Begue A, Desprat JF, Imbernon J, Baret F (1991) Radiation use efficiency of pearl-millet in the Sahelian zone. Agric For Meteorol 56(1–2):93–110
Gobron N, Pinty B, Aussedat O, Chen JM, Cohen WB, Fensholt R, Gond V, Huemmrich KF, Lavergne T, Melin F, Privette JL, Sandholt I, Taberner M, Turner DP, Verstraete MM, Widlowski JL (2006) Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: methodology and results using joint research center products derived from SeaWiFS against ground-based estimations. J Geophys Res Atmos 111(D13110):1–15
Russel G, Jarvis P, Monteith J (1989) Absorption of radiation by canopies and stand growth. In: Russel G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form and function. Cambridge University Press, New York, pp 21–39
Palva L, Garam E, Manoochehri F, Sepponen R, Hari P, Rajala K, Ruotoistenmaki H, Seppala I (1998) A novel multipoint measuring system of photosynthetically active radiation. Agric For Meteorol 89(2):141–147
Palva L, Markkanen T, Siivola E, Garam E, Linnavuo M, Nevas S, Manoochehri F, Palmroth S, Rajala K, Ruotoistenmaki H, Vuorivirta T, Seppala I, Vesala T, Hari P, Sepponen R (2001) Tree scale distributed multipoint measuring system of photosynthetically active radiation. Agric For Meteorol 106(1):71–80
Baret F, Hagolle O, Geiger B, Bicheron P, Miras B, Huc M, Berthelot B, Nino F, Weiss M, Samain O, Roujean JL, Leroy M (2007) LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION - part 1: Principles of the algorithm. Remote Sens Environ 110(3):275–286
Chen JM (1996) Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric For Meteorol 80(2–4):135–163
Nilson T (1971) Theoretical analysis of frequency of gaps in plant stands. Agric Meteorol 8(1):25–38
Lang ARG (1986) Leaf-area and average leaf angle from transmission of direct sunlight. Aust J Bot 34(3):349–355
Welles JM, Norman JM (1991) Instrument for indirect measurement of canopy architecture. Agron J 83:818–825
Baret F, Andrieu B, Folmer J, Hanocq J, Sarrouy C (1993) Gap fraction measurement from hemispherical infrared photography and its use to evaluate PAR interception efficiency. In: Crop structure and microclimate: characterization and applications, INRA edn. Paris, pp 359–372
Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005) Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric For Meteorol 129:187–207
Cescatti A (2007) Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs: Methodology and comparison with standard thresholding techniques. Agric For Meteorol 143:1–12
Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010) Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. Agric For Meteorol 150(1):20–29
Campbell GS (1986) Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agric For Meteorol 36(4):317–321
Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf-area index from spectral reflectance in wheat. Agron J 76(2):300–306
Myneni RB, Williams DL (1994) On the relationship between fAPAR and NDVI. Remote Sens Environ 49(3):200–211
Weiss M, Baret F (1999) Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data. Remote Sens Environ 70(3):293–306
Weiss M, Baret F, Myneni RB, Pragnere A, Knyazikhin Y (2000) Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 20(1):3–22
Roujean JL, Breon FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51(3):375–384
Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83(1–2):214–231
Bacour C, Baret F, Beal D, Weiss M, Pavageau K (2006) Neural network estimation of LAI, fAPAR, fCover and LAIxC(ab), from top of canopy MERIS reflectance data: Principles and validation. Remote Sens Environ 105(4):313–325
Fensholt R, Sandholt I, Rasmussen MS (2004) Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens Environ 91(3–4):490–507
Morisette JT, Baret F, Privette JL, Myneni RB, Nickeson JE, Garrigues S, Shabanov NV, Weiss M, Fernandes RA, Leblanc SG, Kalacska M, Sanchez-Azofeifa GA, Chubey M, Rivard B, Stenberg P, Rautiainen M, Voipio P, Manninen T, Pilant AN, Lewis TE, Iiames JS, Colombo R, Meroni M, Busetto L, Cohen WB, Turner DP, Warner ED, Petersen GW, Seufert G, Cook R (2006) Validation of global moderate-resolution LAI products: A framework proposed within the CEOS Land Product Validation subgroup. IEEE Trans Geosci Remote Sens 44(7):1804–1817
Weiss M, Baret F, Garrigues S, Lacaze R (2007) LAI and fAPAR CYCLOPES global products derived from VEGETATION, part 2: validation and comparison with MODIS collection 4 products. Remote Sens Environ 110(3):317–331
Wiegand CL, Maas SJ, Aase JK, Hatfield JL, Pinter PJ, Jackson RD, Kanemasu ET, Lapitan RL (1992) Multisite analyses of spectral-biophysical data for wheat. Remote Sens Environ 42(1):1–21
Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6(8):1335–1372
Baret F, Pavageau K, Béal D, Weiss M, Berthelot B, Regner P (2006) Algorithm theoretical basis document for MERIS top of atmosphere land products (TOA_VEG). INRA-CSE, 2006
Deng F, Chen JM, Plummer S, Chen MZ, Pisek J (2006) Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans Geosci Remote Sens 44(8):2219–2229
Baret F, Weiss M, Lacaze R, Camacho F, Pacholcyzk P, Makhmara H, Smets B (2010) Consistent and accurate LAI, FAPAR and FCOVER global products: principles and evaluation of GEOV1 products. In Sobrino (ed) Proceedings of the third international symposium on recent advances in quantitative remote sensing, Valencia (Spain), pp 208–213
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media, LLC
About this entry
Cite this entry
Mõttus, M., Sulev, M., Baret, F., Lopez-Lozano, R., Reinart, A. (2012). Photosynthetically Active Radiation: Measurement and Modeling . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_451
Download citation
DOI: https://doi.org/10.1007/978-1-4419-0851-3_451
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-89469-0
Online ISBN: 978-1-4419-0851-3
eBook Packages: Earth and Environmental ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences