Skip to main content

Photosynthetically Active Radiation: Measurement and Modeling

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

Definition of the Subject

In the broad sense, photosynthetically active radiation (PAR) is the part of electromagnetic radiation that can be used as the source of energy for photosynthesis by green plants. Technically, it is defined as radiation in the spectral range from 400 to 700 nm [1, 2]. It is expressed either in terms of photosynthetic photon flux density (PPFD , μmol photons m−2 s−1), since photosynthesis is a quantum process, or in terms of photosynthetic radiant flux density (PAR irradiance, W m−2), more suitable for energy balance studies. A fundamental term in the quantification of light used by plants in the photosynthesis process is the fraction of absorbed photosynthetically active radiation (fAPAR) calculated as the ratio of absorbed to total incident PAR in a vegetation canopy. This variable is widely used in vegetation functioning models at a range of spatial scales from the plant to the globe as an indicator of the amount of energy...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Photosynthetically active radiation (PAR):

The part of electromagnetic radiation that can be used as the source of energy for photosynthesis by green plants, measured as PAR irradiance or PPFD.

PAR waveband:

Spectral region for electromagnetic radiation defined by the wavelength limits of 400–700 nm.

PAR irradiance:

Radiant flux density, or the radiative energy received by unit surface area in unit time, carried by photons in the PAR waveband.

Photosynthetic photon flux density (PPFD):

The number of photons with wavelengths in the PAR waveband passing through unit surface area in unit time; synonymous to PAR quantum flux.

Photosynthetic action spectrum:

The spectral dependence of photosynthetic productivity per unit absorbed energy, usually plotted in relative units.

IPAR:

Intercepted PAR, or the amount of incident PAR not directly transmitted to the ground by a vegetation canopy.

APAR:

Absorbed PAR, the amount of incident PAR absorbed by a vegetation canopy.

fIPAR:

The fraction of incident PAR not directly transmitted to the ground by a vegetation canopy.

fAPAR:

The fraction of incident PAR absorbed by a vegetation canopy.

Global PAR:

The sum of diffuse and direct PAR: total PAR falling on a horizontal surface.

Ideal PAR energy sensor:

PAR sensor with output proportional to PAR irradiance.

Ideal PAR quantum sensor:

PAR sensor with output proportional to PPFD.

Spectral error:

Broadband radiation measurement errors arising from the deviation of the predicted radiation spectrum from the actual one.

Radiative transfer theory (RTT):

The mathematical framework for describing the radiation field in an absorbing, scattering, and emitting medium based on radiation beams traveling in straight lines.

Bibliography

  1. McCree KJ (1972) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9(3–4):191–216

    Google Scholar 

  2. McCree KJ (1972) Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric Meteorol 10(6):443–453

    Article  Google Scholar 

  3. Monteith JL (1977) Climate and efficiency of crop production in Britain. Philos Trans R Soc Lond B Biol Sci 281(980):277–294

    Article  Google Scholar 

  4. Shibles R (1976) Terminology pertaining to photosynthesis. Crop Sci 16(3):437–439

    Article  Google Scholar 

  5. CIE (1993) Terminology for photosynthetically active radiation for plants. CIE Collect Photobiol Photochem 106(6):42–46, ISBN 3900734461

    Google Scholar 

  6. McCree KJ (1965) Light measurements in plant growth investigations. Nature 206(4983):527–528

    Article  Google Scholar 

  7. Inada K (1976) Action spectra for photosynthesis in higher-plants. Plant Cell Physiol 17(2):355–365

    Google Scholar 

  8. Barnes C, Tibbitts T, Sager J, Deitzer G, Bubenheim D, Koerner G, Bugbee B (1993) Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux. Hortscience 28(12):1197–1200

    CAS  Google Scholar 

  9. Bonhomme R (2000) Beware of comparing RUE values calculated from PAR vs solar radiation or absorbed vs intercepted radiation. Field Crops Res 68(3):247–252, cited By (since 1996) 16

    Article  Google Scholar 

  10. Sinclair TR, Muchow RC (1999) Radiation use efficiency. Adv Agron 65:215–265

    Article  Google Scholar 

  11. Ross J, Sulev M (2000) Sources of errors in measurements of PAR. Agric For Meteorol 100(2–3):103–125

    Article  Google Scholar 

  12. Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Mededel Landbouwhogeschool Wageningen 59:1–68

    Google Scholar 

  13. Nichiporovich A (1960) Conference on measurement of visible radiation in plant physiology. Sov Plant Physiol 7:744–747

    Google Scholar 

  14. McCree K (1966) A solarimeter for measuring photosynthetically active radiation. Agric Meteorol 3(5–6):353–366, cited By (since 1996) 20

    Article  Google Scholar 

  15. Ross J (1975) Radiative transfer in plant communities. In: Monteith JL (ed) Vegetation and the atmosphere, vol 1. Academic, London/New York, pp 13–55

    Google Scholar 

  16. ISO (2004) Spatial distribution of daylight. CIE standard general sky. ISO 15469:2004/CIE 011:2003. ISO, 2004

    Google Scholar 

  17. LI-COR (1986) LI-COR radiation sensors. instruction manual. Publ. no 8609-56. Lincoln, Nebraska

    Google Scholar 

  18. LI-COR (1991) LI-COR radiation measurement instruments. Lincoln, Nebraska

    Google Scholar 

  19. Pearcy R (1989) Radiation and light measurements. In: Pearcy R, Ehleringer J, Mooney H, Rundel P (eds) Plant physiological ecology. Chapman & Hall, New York, pp 97–116, ch. 6

    Chapter  Google Scholar 

  20. Ross J, Sulev M, Saarelaid P (1998) Statistical treatment of the PAR variability and its application to willow coppice. Agric For Meteorol 91(1–2):1–21

    Article  Google Scholar 

  21. Norman JM, Tanner CB, Thurtell GW (1969) Photosynthetic light sensor for measurements in plant canopies. Agron J 61(6):840–843

    Article  Google Scholar 

  22. Britton CM, Dodd JD (1976) Relationships of photosynthetically active radiation and shortwave irradiance. Agric Meteorol 17(1):1–7

    Article  Google Scholar 

  23. Howell TA, Meek DW, Hatfield JL (1983) Relationship of photosynthetically active radiation to shortwave radiation in the San-Joaquin Valley. Agric Meteorol 28(2):157–175

    Article  Google Scholar 

  24. Alados I, FoyoMoreno I, Alados-Arboledas L (1996) Photosynthetically active radiation: Measurements and modelling. Agric For Meteorol 78(1–2):121–131

    Article  Google Scholar 

  25. Fielder P, Comeau P (2000) Construction and testing of an inexpensive PAR sensor. Ministry of Forests Research, British Columbia, Working Paper 53/2000

    Google Scholar 

  26. Rodskjer N, Kornher A (1971) Über die bestimmung der strahlungsenergie im wellen-längenbereich von 0, 3–0, 7 [mu] in pflanzenbeständen. Agric Meteorol 8:139–150

    Article  Google Scholar 

  27. Slomka J, Slomka K (1986) Participation of photosynthetically active radiation in global radiation. In: Publications of the Institute of Geophysics, Polish Academy of Sciences, p 197

    Google Scholar 

  28. Stanhill G, Fuchs M (1977) Relative flux-density of photosynthetically active radiation. J Appl Ecol 14(1):317–322

    Article  Google Scholar 

  29. Stigter CJ, Musabilha VMM (1982) The conservative ratio of photosynthetically active to total radiation in the tropics. J Appl Ecol 19(3):853–858

    Article  Google Scholar 

  30. Blackburn WJ, Proctor JTA (1983) Estimating photosynthetically active radiation from measured solar irradiance. Sol Energy 31(2):233–234

    Article  Google Scholar 

  31. Hansen V (1984) Spectral distribution of solar-radiation on clear days - a comparison between measurements and model estimates. J Climate Appl Meteorol 23(5):772–780

    Article  Google Scholar 

  32. Rao CRN (1984) Photosynthetically active components of global solar-radiation – measurements and model computations. Arch Meteorol Geophys Bioclimatol B Theor Appl Climatol 34(4):353–364

    Article  Google Scholar 

  33. Spitters CJT, Toussaint HAJM, Goudriaan J (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. 1. components of incoming radiation. Agric For Meteorol 38(1–3):217–229

    Article  Google Scholar 

  34. Tooming H, Niilisk H (1967) Transition coefficients from integrated radiation to photosynthetic active radiation (PAR) under field conditions. In: Phytoactinometrical investigations of plant canopy (in Russian). Valgus Publishers, Tallinn, pp 140–149

    Google Scholar 

  35. Karalis JD (1989) Characteristics of direct photosynthetically active radiation. Agric For Meteorol 48(3–4):225–234

    Article  Google Scholar 

  36. Jacovides CP, Kallos GB, Steven MD (1993) Spectral band resolution of solar-radiation in Athens, Greece. Int J Climatol 13(6):689–697

    Article  Google Scholar 

  37. Stephens K, Strickland JDH (1962) Use of a thermopile radiometer for measuring the attenuation of photosynthetically active radiation in the sea. Limnol Oceanogr 7(4):485–487

    Article  Google Scholar 

  38. Mims FM (2003) A 5-year study of a new kind of photosynthetically active radiation sensor. Photochem Photobiol 77(1):30–33

    Article  CAS  Google Scholar 

  39. Mõttus M, Ross J, Sulev M (2001) Experimental study of ratio of PAR to direct integral solar radiation under cloudless conditions. Agric For Meteorol 109(3):161–170

    Article  Google Scholar 

  40. Grant RH, Heisler GM, Gao W (1996) Photosynthetically-active radiation: Sky radiance distributions under clear and overcast conditions. Agric For Meteorol 82(1–4):267–292

    Article  Google Scholar 

  41. Grant R, Heisler G (1997) Obscured overcast sky radiance distributions for ultraviolet and photosynthetically active radiation. J Appl Meteorol 36(10):1336–1345

    Article  Google Scholar 

  42. McArthur LJB (2004) Baseline Surface Radiation Network (BSRN) operations manual, version 2.1. Technical Report WMO/TD-No. 879, World Climate Research Programme Baseline Surface Radiation Network. http://www.bsrn.awi.de/fileadmin/user_upload/Home/Publications/McArthur.pdf

  43. Michalsky JJ, Harrison LC, Berkheiser WE (1995) Cosine response characteristics of some radiometric and photometric sensors. Sol Energy 54(6):397–402

    Article  Google Scholar 

  44. Su WY, Charlock TP, Rose FG, Rutan D (2007) Photosynthetically active radiation from Clouds and the Earth’s Radiant Energy System (CERES) products. J Geophys Res Biogeosci 112(G2):G02022

    Article  Google Scholar 

  45. BSRN (2005) UV and PAR measurement. Report of the eighth session of the Baseline Surface Radiation Network (BSRN) workshop and scientific review meeting (Exeter, UK, 26–30 July 2004), vol 4/2005, pp 14–16. World Climate Research Programme, Informal Report 4/2005, 2005

    Google Scholar 

  46. Gueymard CA (2008) REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – validation with a benchmark dataset. Sol Energy 82(3):272–285

    Article  Google Scholar 

  47. Alados I, Alados-Arboledas L (Jan 1999) Direct and diffuse photosynthetically active radiation: measurements and modelling. Agric For Meteorol 93:27–38

    Article  Google Scholar 

  48. Bosch JL, Lopez G, Batlles FJ (Jan 2009) Global and direct photosynthetically active radiation parameterizations for clear-sky conditions. Agric For Meteorol 149:146–158

    Article  Google Scholar 

  49. Perez R, Ineichen P, Seals R, Michalsky J, Stewart R (1990) Modeling daylight availability and irradiance components from direct and global irradiance. Sol Energy 44(5):271–289

    Article  Google Scholar 

  50. Alados I, Olmo FJ, Foyo-Moreno I, Alados-Arboledas L (Apr 2000) Estimation of photosynthetically active radiation under cloudy conditions. Agric For Meteorol 102:39–50

    Article  Google Scholar 

  51. Alados-Arboledas L, Olmo FJ, Alados I, Perez M (2000) Parametric models to estimate photosynthetically active radiation in Spain. Agric For Meteorol 101(2–3):187–201

    Article  Google Scholar 

  52. Jacovides CP, Timbios F, Asimakopoulos DN, Steven MD (1997) Urban aerosol and clear skies spectra for global and diffuse photosynthetically active radiation. Agric For Meteorol 87(2–3):91–104

    Article  Google Scholar 

  53. Papaioannou G, Papanikolaou N, Retalis D (1993) Relationships of photosynthetically active radiation and shortwave irradiance. Theor Appl Climatol 48(1):23–27

    Article  Google Scholar 

  54. Jacovides CP, Tymvios FS, Asimakopoulos DN, Theofilou KM, Pashiardes S (2003) Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theor Appl Climatol 74(3–4):227–233

    Article  Google Scholar 

  55. Wang Q, Kakubari Y, Kubota M, Tenhunen J (Jan 2007) Variation on PAR to global solar radiation ratio along altitude gradient in Naeba Mountain. Theor Appl Climatol 87:239–253

    Article  Google Scholar 

  56. McCree K (1981) Photosynthetically active radiation. In: Pirson A, Zimmermann M (eds) Encyclopedia of plant physiology, vol 12A. Springer, Berlin, Heidelberg, pp 41–55

    Google Scholar 

  57. Dye DG (2004) Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions. J Geophys Res Atmos 109(D10):D10203

    Article  CAS  Google Scholar 

  58. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge/England

    Book  Google Scholar 

  59. Buiteveld H, Hakvoort JH, Donze M (Oct 1994) Optical properties of pure water. In: Jaffe JS (ed) Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 2258 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp 174–183

    Google Scholar 

  60. Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization. J Geophys Res Oceans 100(C7):13321–13332

    Article  Google Scholar 

  61. Bricaud A, Stramski D (1990) Spectral absorption-coefficients of living phytoplankton and nonalgal biogenous matter - a comparison between the Peru upwelling area and the Sargasso sea. Limnol Oceanogr 35(3):562–582

    Article  CAS  Google Scholar 

  62. Jerlov NG (1976) Marine optics. Elsevier, Amsterdam/New York

    Google Scholar 

  63. Austin RW, Petzold TJ (1986) Spectral dependence of the diffuse attenuation coefficient of light in ocean waters. Opt Eng 25(3):471–479

    Article  Google Scholar 

  64. Reinart A, Herlevi A (1999) Diffuse attenuation coefficient in some Estonian and Finnish lakes. Proc Estonian Acad Sci Biol Ecol 48(4):267–283

    Google Scholar 

  65. Reinart A, Arst H, Blanco-Sequeiros A, Herlevi A (1998) Relation between underwater irradiance and quantum irradiance in dependence on water transparency at different depths in the water bodies. J Geophys Res Oceans 103(C4):7749–7752

    Article  Google Scholar 

  66. Dera J (1992) Marine physics. Elsevier, Amsterdam

    Google Scholar 

  67. Ehn J, Granskog MA, Reinart A, Erm A (2004) Optical properties of melting land-fast sea ice and underlying seawater in Santala Bay, Gulf of Finland. J Geophys Res Oceans 109(C9):C09003

    Article  Google Scholar 

  68. Morel A, Smith RC (1974) Relation between total quanta and total energy for aquatic photosynthesis. Limnol Oceanogr 19(4):591–600

    Article  Google Scholar 

  69. Aas E (1971) Natural history of Hardangerfjord. 9. Irradiance in Hardangerfjorden 1967. Sarsia 46:59–78

    Google Scholar 

  70. Ohmura A, Dutton EG, Forgan B, Frohlich C, Gilgen H, Hegner H, Heimo A, Konig-Langlo G, McArthur B, Muller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline surface radiation network (BSRN/WCRP): New precision radiometry for climate research. Bull Am Meteorol Soc 79(10):2115–2136

    Article  Google Scholar 

  71. Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  72. Friend AD, Arneth A, Kiang NY, Lomas M, Ogee J, Rodenbeckk C, Running SW, Santaren JD, Sitch S, Viovy N, Woodward FI, Zaehle S (2007) FLUXNET and modelling the global carbon cycle. Glob Change Biol 13(3):610–633

    Article  Google Scholar 

  73. Augustine JA, DeLuisi JJ, Long CN (2000) SURFRAD - a national surface radiation budget network for atmospheric research. Bull Am Meteorol Soc 81(10):2341–2357

    Article  Google Scholar 

  74. Hari P, Andreae MO, Kabat P, Kulmala M (2009) A comprehensive network of measuring stations to monitor climate change. Boreal Environ Res 14(4):442–446

    CAS  Google Scholar 

  75. Jacquemoud S, Baret F (1990) Prospect - a model of leaf optical-properties spectra. Remote Sens Environ 34(2):75–91

    Article  Google Scholar 

  76. Feret JB, Francois C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le Maire G, Jacquemoud S (2008) PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 112(6):3030–3043

    Article  Google Scholar 

  77. Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2–3):337–354

    Article  Google Scholar 

  78. Martin G, Josserand SA, Bornman JF, Vogelmann TC (1989) Epidermal focusing and the light microenvironment within leaves of medicago-sativa. Physiol Plant 76(4):485–492

    Article  Google Scholar 

  79. Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149(1):78–90

    Article  CAS  Google Scholar 

  80. Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Google Scholar 

  81. Emerson R (1929) The relation between maximum rate of photosynthesis and concentration of chlorophyll. J Gen Physiol 12(5):609–622

    Article  CAS  Google Scholar 

  82. Peñuelas J, Baret F, Filella I (1995) Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 31(2):221–230

    Google Scholar 

  83. Moya I, Camenen L, Evain S, Goulas Y, Cerovic ZG, Latouche G, Flexas J, Ounis A (2004) A new instrument for passive remote sensing 1, measurements of sunlight-induced chlorophyll fluorescence. Remote Sens Environ 91(2):186–197

    Article  Google Scholar 

  84. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  Google Scholar 

  85. Ross J (1981) The radiation regime and architecture of plant stands. Dr. W. Junk Publishers, The Hague

    Book  Google Scholar 

  86. Myneni R, Ross JE (1991) Photon-vegetation interactions. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  87. Malenovsky Z, Mishra KB, Zemek F, Rascher U, Nedbal L (2009) Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. J Exp Bot 60(11):2987–3004

    Article  CAS  Google Scholar 

  88. Monsi M, Saeki T (1953) Über den lichtfaktor in den pflanzengesellschaften und seine bedeutung für die stoffproduktion. Jpn J Bot 14:22–52

    Google Scholar 

  89. Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95(3):549–567

    Article  Google Scholar 

  90. Lieffers V, Messier C, Stadt K, Gendron F, Comeau P (1999) Predicting and managing light in the understory of boreal forests. Can J For Res 29(6):796–811

    Article  Google Scholar 

  91. Campbell GS, Norman JM (1998) Introduction to environmental biophysics, 2nd edn. Springer, New York

    Book  Google Scholar 

  92. Breda NJJ (Nov 2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417

    Article  CAS  Google Scholar 

  93. Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (Jan 2004) Review of methods for in situ leaf area index determination - Part I theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35

    Article  Google Scholar 

  94. Ni WG, Li XW, Woodcock CE, Roujean JL, Davis RE (Dec 1997) Transmission of solar radiation in boreal conifer forests: Measurements and models. J Geophys Res Atmos 102:29555–29566

    Article  CAS  Google Scholar 

  95. Mõttus M, Sulev M (2006) Radiation fluxes and canopy transmittance: Models and measurements inside a willow canopy. J Geophys Res Atmos 111(D2):D02109

    Article  Google Scholar 

  96. Chelle M (2006) Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption? Ecol Modell 198(1–2):219–228

    Article  Google Scholar 

  97. Asner GP, Wessman CA, Schimel DS, Archer S (Mar 1998) Variability in leaf and litter optical properties: Implications for BRDF model inversions using AVHRR, MODIS, and MISR. Remote Sens Environ 63:243–257

    Article  Google Scholar 

  98. Baldocchi D, Collineau S (1994) The physical nature of solar radiation in heterogeneous canopies: spatial and temporal attributes. In: Exploitation of environmental heterogeneity by plants: ecophysiological processes above- and below ground. Academic, San Diego, pp 21–71

    Chapter  Google Scholar 

  99. Reifsnyder W, Furnival G, Horowitz J (1971–1972) Spatial and temporal distribution of solar radiation beneath forest canopies. Agric Meteorol 9:21–37

    Article  Google Scholar 

  100. DePury DGG, Farquhar GD (May 1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  101. Oker-Blom P (1985) Photosynthesis of a Scots pine shoot – simulation of the irradiance distribution and photosynthesis of a shoot in different radiation-fields. Agric For Meteorol 34(1):31–40

    Article  Google Scholar 

  102. Myneni RB, Asrar G, Wall GW, Kanemasu ET, Impens I (1986) Canopy architecture, irradiance distribution on leaf surfaces and consequent photosynthetic efficiencies in heterogeneous plant canopies. 2 results and discussion. Agric For Meteorol 37(3):205–218

    Article  Google Scholar 

  103. Stenberg P (1998) Implications of shoot structure on the rate of photosynthesis at different levels in a coniferous canopy using a model incorporating grouping and penumbra. Funct Ecol 12(1):82–91

    Article  Google Scholar 

  104. Gu LH, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res Atmos 107(D5–6):4050

    Article  Google Scholar 

  105. Roderick ML, Farquhar GD, Berry SL, Noble IR (Sept 2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30

    Article  Google Scholar 

  106. Gu LH, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 299(5615):2035–2038

    Article  CAS  Google Scholar 

  107. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (Apr 2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017

    Article  CAS  Google Scholar 

  108. Vesala T, Markkanen T, Palva L, Siivola E, Palmroth S, Hari P (Feb. 2000) Effect of variations of PAR on CO2 exchange estimation for Scots pine. Agric For Meteorol 100:337–347

    Article  Google Scholar 

  109. Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric For Meteorol 87(2–3):179–200

    Article  Google Scholar 

  110. Schaepman-Strub G, Schaepman ME, Painter TH, Dangel S, Martonchik JV (2006) Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sens Environ 103(1):27–42

    Article  Google Scholar 

  111. Nicodemus FE (1970) Reflectance nomenclature and directional reflectance and emissivity. Appl Opt 9(6):1474–1475

    Article  CAS  Google Scholar 

  112. Baret F, Guyot G (1991) Potentials and limits of vegetation indexes for LAI and APAR assessment. Remote Sens Environ 35(2–3):161–173

    Article  Google Scholar 

  113. McCallum I, Wagner W, Schmullius C, Shvidenko A, Obersteiner M, Fritz S, Nilsson S (2010) Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote Sens Environ 114(5):941–949

    Article  Google Scholar 

  114. Asrar G (1989) Theory and applications of optical remote sensing. Wiley, New York

    Google Scholar 

  115. Begue A, Desprat JF, Imbernon J, Baret F (1991) Radiation use efficiency of pearl-millet in the Sahelian zone. Agric For Meteorol 56(1–2):93–110

    Article  Google Scholar 

  116. Gobron N, Pinty B, Aussedat O, Chen JM, Cohen WB, Fensholt R, Gond V, Huemmrich KF, Lavergne T, Melin F, Privette JL, Sandholt I, Taberner M, Turner DP, Verstraete MM, Widlowski JL (2006) Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: methodology and results using joint research center products derived from SeaWiFS against ground-based estimations. J Geophys Res Atmos 111(D13110):1–15

    Google Scholar 

  117. Russel G, Jarvis P, Monteith J (1989) Absorption of radiation by canopies and stand growth. In: Russel G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form and function. Cambridge University Press, New York, pp 21–39

    Chapter  Google Scholar 

  118. Palva L, Garam E, Manoochehri F, Sepponen R, Hari P, Rajala K, Ruotoistenmaki H, Seppala I (1998) A novel multipoint measuring system of photosynthetically active radiation. Agric For Meteorol 89(2):141–147

    Article  Google Scholar 

  119. Palva L, Markkanen T, Siivola E, Garam E, Linnavuo M, Nevas S, Manoochehri F, Palmroth S, Rajala K, Ruotoistenmaki H, Vuorivirta T, Seppala I, Vesala T, Hari P, Sepponen R (2001) Tree scale distributed multipoint measuring system of photosynthetically active radiation. Agric For Meteorol 106(1):71–80

    Article  Google Scholar 

  120. Baret F, Hagolle O, Geiger B, Bicheron P, Miras B, Huc M, Berthelot B, Nino F, Weiss M, Samain O, Roujean JL, Leroy M (2007) LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION - part 1: Principles of the algorithm. Remote Sens Environ 110(3):275–286

    Article  Google Scholar 

  121. Chen JM (1996) Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric For Meteorol 80(2–4):135–163

    Article  Google Scholar 

  122. Nilson T (1971) Theoretical analysis of frequency of gaps in plant stands. Agric Meteorol 8(1):25–38

    Article  Google Scholar 

  123. Lang ARG (1986) Leaf-area and average leaf angle from transmission of direct sunlight. Aust J Bot 34(3):349–355

    Article  Google Scholar 

  124. Welles JM, Norman JM (1991) Instrument for indirect measurement of canopy architecture. Agron J 83:818–825

    Article  Google Scholar 

  125. Baret F, Andrieu B, Folmer J, Hanocq J, Sarrouy C (1993) Gap fraction measurement from hemispherical infrared photography and its use to evaluate PAR interception efficiency. In: Crop structure and microclimate: characterization and applications, INRA edn. Paris, pp 359–372

    Google Scholar 

  126. Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005) Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric For Meteorol 129:187–207

    Article  Google Scholar 

  127. Cescatti A (2007) Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs: Methodology and comparison with standard thresholding techniques. Agric For Meteorol 143:1–12

    Article  Google Scholar 

  128. Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010) Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. Agric For Meteorol 150(1):20–29

    Article  Google Scholar 

  129. Campbell GS (1986) Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agric For Meteorol 36(4):317–321

    Article  Google Scholar 

  130. Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf-area index from spectral reflectance in wheat. Agron J 76(2):300–306

    Article  Google Scholar 

  131. Myneni RB, Williams DL (1994) On the relationship between fAPAR and NDVI. Remote Sens Environ 49(3):200–211

    Article  Google Scholar 

  132. Weiss M, Baret F (1999) Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data. Remote Sens Environ 70(3):293–306

    Article  Google Scholar 

  133. Weiss M, Baret F, Myneni RB, Pragnere A, Knyazikhin Y (2000) Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 20(1):3–22

    Article  Google Scholar 

  134. Roujean JL, Breon FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51(3):375–384

    Article  Google Scholar 

  135. Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83(1–2):214–231

    Article  Google Scholar 

  136. Bacour C, Baret F, Beal D, Weiss M, Pavageau K (2006) Neural network estimation of LAI, fAPAR, fCover and LAIxC(ab), from top of canopy MERIS reflectance data: Principles and validation. Remote Sens Environ 105(4):313–325

    Article  Google Scholar 

  137. Fensholt R, Sandholt I, Rasmussen MS (2004) Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens Environ 91(3–4):490–507

    Article  Google Scholar 

  138. Morisette JT, Baret F, Privette JL, Myneni RB, Nickeson JE, Garrigues S, Shabanov NV, Weiss M, Fernandes RA, Leblanc SG, Kalacska M, Sanchez-Azofeifa GA, Chubey M, Rivard B, Stenberg P, Rautiainen M, Voipio P, Manninen T, Pilant AN, Lewis TE, Iiames JS, Colombo R, Meroni M, Busetto L, Cohen WB, Turner DP, Warner ED, Petersen GW, Seufert G, Cook R (2006) Validation of global moderate-resolution LAI products: A framework proposed within the CEOS Land Product Validation subgroup. IEEE Trans Geosci Remote Sens 44(7):1804–1817

    Article  Google Scholar 

  139. Weiss M, Baret F, Garrigues S, Lacaze R (2007) LAI and fAPAR CYCLOPES global products derived from VEGETATION, part 2: validation and comparison with MODIS collection 4 products. Remote Sens Environ 110(3):317–331

    Article  Google Scholar 

  140. Wiegand CL, Maas SJ, Aase JK, Hatfield JL, Pinter PJ, Jackson RD, Kanemasu ET, Lapitan RL (1992) Multisite analyses of spectral-biophysical data for wheat. Remote Sens Environ 42(1):1–21

    Article  Google Scholar 

  141. Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6(8):1335–1372

    Article  Google Scholar 

  142. Baret F, Pavageau K, Béal D, Weiss M, Berthelot B, Regner P (2006) Algorithm theoretical basis document for MERIS top of atmosphere land products (TOA_VEG). INRA-CSE, 2006

    Google Scholar 

  143. Deng F, Chen JM, Plummer S, Chen MZ, Pisek J (2006) Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans Geosci Remote Sens 44(8):2219–2229

    Article  Google Scholar 

  144. Baret F, Weiss M, Lacaze R, Camacho F, Pacholcyzk P, Makhmara H, Smets B (2010) Consistent and accurate LAI, FAPAR and FCOVER global products: principles and evaluation of GEOV1 products. In Sobrino (ed) Proceedings of the third international symposium on recent advances in quantitative remote sensing, Valencia (Spain), pp 208–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Mõttus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Mõttus, M., Sulev, M., Baret, F., Lopez-Lozano, R., Reinart, A. (2012). Photosynthetically Active Radiation: Measurement and Modeling . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_451

Download citation

Publish with us

Policies and ethics