Skip to main content

Definition

Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in “top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Anomaly:

The deviation of a parameter from its mean value over a defined reference period.

Blackbody radiator:

A body that emits the maximum radiation possible for its temperature, at all wavelengths.

Chromosphere:

The lower solar atmosphere, within about 2,000 km of the photosphere.

Cloud condensation nuclei:

An aerosol particle or air ion on which water can condense such that it grows into a cloud water droplet.

Diffuse fraction:

The ratio of the intensity in shade divided by the intensity in direct sunlight; for clear skies the diffuse fraction approaches zero, whereas for cloudy skies (and/or with heavy aerosol loading) the diffuse fraction approaches unity.

El Niño Southern Oscillation (ENSO):

The extremes of this quasi-periodic (period of 3–7 years) coupled ocean–atmosphere circulation oscillation are El Niño and La Niña events in which the sea surface temperature in the equatorial Pacific is, respectively, warmer and colder than average. ENSO is one of the predominant causes of interannual variability of regional climates around the globe.

Forbush decrease:

A transient decrease in GCR fluxes reaching Earth lasting typically 1–4 days, caused by the shielding properties of transient events released from the solar atmosphere.

Galactic cosmic rays (GCRs):

Charged particles ranging in mass from electrons and protons up to iron and silicon ions with energies typically of order 0.1–100 GeV. They are generated by explosive galactic events such as supernovae. The flux of GCRs at Earth is modulated by the extension of the solar magnetic field into interplanetary space.

Global albedo (A):

The fraction of the total electromagnetic energy from the Sun incident on the Earth that is reflected back into space.

Global circulation model (GCM):

Also called a General Climate Model. A numerical model of Earth’s global climate system incorporating best available knowledge of the fluid dynamical, chemical, and, increasingly, biological aspects of Earth’s climate system.

Global Mean Air Surface Temperature (GMAST):

The average of the temperature measured 2 m above the ground by a global network of meteorological stations. The number of stations available declines further back into the past and is consistently lower in the southern hemisphere. Note that it is usually expressed as an anomaly by taking global averages of the station temperature anomalies.

Heliosphere:

The area of space surrounding the Sun and solar system dominated by the solar wind and the magnetic field of solar origin embedded in it.

Jet stream:

Narrow bands of fast westerly (eastward) wind in the upper troposphere caused by the combination of equatorial solar heating and Earth’s rotation. There are two in each hemisphere: the polar jets are typically found at latitudes of 30–60° whereas the weaker subtropical jets are at 25–30°.

Laschamp event:

An example of a geomagnetic excursion that occurred around 40 kyr ago. These events are “short-lived” (typically 1–10 kyr in duration) decreases in the geomagnetic field intensity (often to below 20% of normal) with a variation in pole orientation of up to 45°, but no polarity reversal. Any confirmed and consistent paleoclimate signatures of climate change associated with this event would be very significant because the GCR flux reaching Earth’s atmosphere would increase but with no simultaneous solar irradiance change.

North Atlantic Oscillation (NAO):

An oscillation in the pattern and strengths of westerly winds and storm tracks in the north Atlantic. It is quantified by the fluctuations in sea level pressure between the Icelandic low and the Azores high. The NAO is very closely related to the Arctic Oscillation (AO – which is also called the Northern Annular Mode, NAM).

Northern annular mode (NAM):

Also called the Arctic Oscillation: see “North Atlantic Oscillation.”

Open solar flux:

The magnetic field of solar origin that leaves the top of the solar atmosphere and fills the heliosphere.

Paleoclimatology:

The reconstruction of past climate from a variety of sources such as tree growth from tree rings (dendrochronology); analysis of air bubbles trapped in snow and ice; chemical and isotopic analysis of speliothems, lake deposits, ocean sediments, ice-rafted debris and corals; and documentary evidence.

Photosphere:

The visible surface of the Sun (mean radius R).

Radiative forcing:

The change in the difference between the incoming radiation energy and the outgoing radiation energy per unit area at the atmospheric boundary between the troposphere and the stratosphere (the tropopause). It is measured in Wm−2. Consider the case of a TSI change of ΔS: the change in the total power incident on Earth is ΔSπR 2E , where R E is a mean Earth radius. The change per unit surface area of the Earth is ΔSπR 2E /(4πR 2E ) = ΔS/4. The part not reflected back into space is ΔS(1 − A)/4, where A is Earth’s global albedo. Therefore, a TSI change of ΔS corresponds to a radiative forcing of ΔS(1 − A)/4. For other influences on climate the equivalent value can be computed in each case.

Solar energetic particles (SEPs):

Charged particles ranging in mass from electrons and protons up to iron and silicon ions of energies of order 0.1–100 MeV. They are generated by transient events in the solar atmosphere and heliosphere.

Solar wind:

The continuous, supersonic and super Alfvénic outflow of thermal plasma (ionized gas) from the solar atmosphere driven by its high temperatures.

Spectral solar irradiance (SSI):

The solar electromagnetic power at a given wavelength, per unit wavelength, falling on unit area normal to the Sun–Earth line (often considered in the UV band of the spectrum).

Stratosphere:

Atmospheric layer at about 20–55 km altitude, between the tropopause and the stratopause.

Super-Alfvénic:

In a plasma (ionized gas) a family of waves which modulate both the plasma and the magnetic field can propagate. These are called Alfvén waves, and particles that move faster than them are called Super-Alfvénic.

Total solar irradiance (TSI):

The total solar electromagnetic power falling on unit area normal to the Sun–Earth line.

Troposphere:

The Atmospheric layer between Earth’s surface and the tropopause, which lies at an altitude of about 11 km at the poles and 17 km at the equator. All climate and weather processes reside in the troposphere.

Bibliography

  1. Herschel W (1801) Observations tending to investigate the nature of the Sun, in order to find the causes or symptoms of its variable of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philos Trans R Soc Lond 91:265–318

    Article  Google Scholar 

  2. Pustilnik LA, Yom Din G (2004) Influence of solar activity on the state of the wheat market in medieval England. Sol Phys 223:335

    Article  Google Scholar 

  3. Yiou P, Bard E, Dandin P, Legras B, Naveau P, Rust HW, Terray L, Vrac M (2010) Statistical issues about solar-climate relations. Clim Past Discuss 6:461–487 (http://www.clim-past-discuss.net/6/461/2010/)

  4. Legras B, Mestre O, Bard E, Yiou P (2010) On misleading solar-climate relationship. Clim Past Discuss 6:767–800

    Article  Google Scholar 

  5. Santer BD, Wigley TML, Doutriaux C, Boyle JS, Hansen JE, Jones PD, Meehl GA, Roeckner E, Sengupta S, Taylor KE (2001) Accounting for the effects of volcanoes and ENSO in comparisons of modelled and observed temperature trends. J Geophys Res 106:28033–28059

    Article  Google Scholar 

  6. Lean J (2006) Comment on “Estimated solar contribution to the global surface warming using the ACRIM TSI satellite composite” by N. Scafetta and B. J. West. Geophys Res Lett 33:L15701. doi:10.1029/2005GL025342

    Article  CAS  Google Scholar 

  7. Lockwood M (2008) Recent changes in solar outputs and the global mean surface temperature. III. Analysis of contributions to global mean air surface temperature rise. Proc R Soc A 464(2094):1387–1404

    Article  Google Scholar 

  8. Benestad RE, Schmidt GA (2009) Solar trends and global warming. J Geophys Res 114:D14101. doi:10.1029/2008JD011639

    Article  Google Scholar 

  9. Palmer MD, Good SA, Haines K, Rayner NA, Stott PA (2009) A new perspective on warming of the global oceans. Geophys Res Lett 36:L20709. doi:10.1029/2009GL039491

    Article  Google Scholar 

  10. Lockwood M, Fröhlich C (2007) Recent oppositely-directed trends in solar climate forcings and the global mean surface air temperature. Proc R Soc Lond A 463(2086):2447–2460. doi:10.1098/rspa2007.1880

    Article  Google Scholar 

  11. Lockwood M, Rouillard AP, Finch ID (2009) The rise and fall of open solar flux during the current grand solar maximum. Astrophys J 700:937–944. doi:10.1088/0004-637X/700/2/937

    Article  Google Scholar 

  12. Drijfhout SS, Haarsma RJ, Opsteegh JD, Selten FM (1999) Solar-induced versus internal variability in a coupled climate model. Geophys Res Lett 26:205–208

    Article  Google Scholar 

  13. Moore J, Grinsted A, Jevrejeva S (2006) Is there evidence for sunspot forcing of climate at multi-year and decadal periods? Geophys Res Lett 33:L17705. doi:10.1029/2006GL026501

    Article  Google Scholar 

  14. Eddy JA (1976) The maunder minimum. Science 192(4245):1189–1202

    Article  CAS  Google Scholar 

  15. Damon PE, Laut P (2004) Pattern of strange errors plagues solar activity and terrestrial climate data. EOS Trans Am Geophys Union 85(39):370. doi:10.1029/2004EO390005, 2004

    Article  Google Scholar 

  16. Reid G (2000) Solar variability and the Earth’s climate: introduction and overview. Space Sci Rev 94:1–11

    Article  Google Scholar 

  17. Rind D (2002) The Sun’s role in climate variations. Science 296:673–678

    Article  CAS  Google Scholar 

  18. Haigh JD (2003) The effects of solar variability on the Earth’s climate. Philos Trans R Soc Lond A 361(95):111. doi:10.1098/rsta.2002.1111

    Google Scholar 

  19. Haigh JD (2007) The Sun and the Earth’s climate. Living Rev Solar Phys 4:2, URL (cited on 26 September 2009): http://www.livingreviews.org/lrsp-2007-2

  20. Beer J (2006) Solar variability and climate change. Sol Variability Earth’s Climate 76:751–754

    Google Scholar 

  21. Foukal P, Fröhlich C, Spruit H, Wigley TML (2006) Variations in solar luminosity and their effect on the Earth’s climate. Nature 443:161–166. doi:10.1038/nature05072

    Article  CAS  Google Scholar 

  22. de Jager C (2008) Solar activity and its influence on climate. Neth J Geosci Geol En Mijnbouw 87(3):207–213

    Google Scholar 

  23. Gray LJ, Beer J, Geller M, Haigh J, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Marsh N, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48:RG4001. doi:10.1029/2009RG000282

    Google Scholar 

  24. Wigley TML, Raper SCB (1990) Climatic change due to solar irradiance changes. Geophys Res Lett 17:2169–2172

    Article  Google Scholar 

  25. Douglass DH, Clader BD (2002) Climate sensitivity of the Earth to solar irradiance. Geophys Res Lett 29:1786. doi:10.1029/2002GL015345

    Article  Google Scholar 

  26. Schwartz SE (2007) Heat capacity, time constant, and sensitivity of Earth’s climate system. J Geophys Res 112:D24S05. doi:10.1029/2007JD008746

    Article  Google Scholar 

  27. Stouffer RJ (2004) Time scales of climate response. J Climate 17(1):209–217

    Article  Google Scholar 

  28. Knutti R, Krähenmann S, Frame DJ, Allen MR (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. J Geophys Res 113:D15103. doi:10.1029/2007JD009473

    Article  Google Scholar 

  29. Hansen J, Russell G, Lacis AA, Fung I, Rind D, Stone P (1985) Climate response times: dependence on climate sensitivity and ocean mixing. Science 229:857–859

    Article  CAS  Google Scholar 

  30. Dickinson RE, Schaudt KJ (1998) Analysis of timescales of response of a simple climate model. J Climate 11:97–106

    Article  Google Scholar 

  31. Rind D, Lean J, Healy R (1999) Simulated time-dependent climate response to solar radiative forcing since 1600. J Geophys Res 104:1973–1990

    Article  Google Scholar 

  32. Waple AM, Mann ME, Bradley RS (2002) Long-term patterns of solar irradiance forcing in model experiments and proxy-based surface temperature reconstructions. Climate Dyn 18:563–578

    Google Scholar 

  33. Weber SL (2005) A timescale analysis of the Northern Hemisphere temperature response to volcanic and solar forcing. Clim Past Discuss 1:9–17

    Article  Google Scholar 

  34. Lockwood M, Fröhlich C (2008) Recent oppositely-directed trends in solar climate forcings and the global mean surface air temperature: II. Different reconstructions of the Total Solar Irradiance variation and dependence on response timescale. Proc R Soc Lond 464(2094):1367–1385

    Article  Google Scholar 

  35. Solanki SK, Krivova NA, Wenzler T (2005) Irradiance models. Adv Space Res 35:376–383

    Article  Google Scholar 

  36. Baliunas S, Jastrow R (1990) Evidence for long-term brightness changes of solar-type stars. Nature 348:520–523

    Article  Google Scholar 

  37. Wenzler T, Solanki SK, Kirova NA, Fröhlich C (2006) Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Astron Astrophys 460:583–595

    Article  Google Scholar 

  38. Hoyt D, Schatten K (1993) A discussion of plausible solar irradiance variations 1700–1992. J Geophys Res 98:18895–18906

    Article  Google Scholar 

  39. Solanki SK, Fligge M (1999) A reconstruction of total solar irradiance since 1700. Geophys Res Lett 26:2465–2468

    Article  Google Scholar 

  40. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3319. doi:10.1029/95GL03093

    Article  Google Scholar 

  41. Lockwood M (2010) Solar change and climate: an update in the light of the current exceptional solar minimum. Proc R Soc A 466(2114):303–329. doi:10.1098/rspa.2009.0519

    Article  Google Scholar 

  42. Lockwood M (2002) An evaluation of the correlation between open solar flux and total solar irradiance. Astron Astrophys 382:678–687

    Article  CAS  Google Scholar 

  43. Fröhlich C (2009) Evidence of a long-term trend in total solar irradiance. Astron Astrophys 501(3):L27–L30. doi:10.1051/0004-6361/200912318

    Article  CAS  Google Scholar 

  44. Willson RC (1997) Total solar irradiance trend during solar cycles 21 and 22. Science 277:1963–1965

    Article  CAS  Google Scholar 

  45. Rouillard AP, Lockwood M, Finch ID (2007) Centennial changes in the solar wind speed and in the open solar flux. J Geophys Res 112:A05103. doi:10.1029/2006JA012130

    Article  CAS  Google Scholar 

  46. Foster SS (2004) Reconstruction of solar irradiance variations, for use in studies of global climate change: application of recent SoHO observations with historic data from the Greenwich observations. PhD thesis, School of Physics and Astronomy, University of Southampton, Southampton

    Google Scholar 

  47. Lockwood M (2004) Solar outputs, their variations and their effects of Earth. In: Rüedi I, Güdel M, Schmutz W (eds) The Sun, solar analogs and the climate, Proceedings of Saas-Fee advanced course 34. Springer, Berlin, pp 107–304 (ISBN 3-540-23856-5)

    Google Scholar 

  48. Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467:335–346. doi:10.1051/0004-6361:20066725

    Article  Google Scholar 

  49. Zhang Q, Soon WH, Baliunas SL, Lockwood GW, Skiff BA, Raddick RR (1994) A method of determining possible brightness variations of the Sun in past centuries from observations of solar-type stars. Astrophys J 427:L111–L114

    Article  Google Scholar 

  50. Hall JC, Lockwood GW (2004) The chromospheric activity and variability of cycling and flat activity solar-analog stars. Astrophys J 614(1):942–946

    Article  CAS  Google Scholar 

  51. Giampapa M (2004) Stellar analogs of solar activity: the Sun in a stellar context. In: Redi I, Güdel M, Schmutz W (eds) The Sun, solar analogs and the climate. Springer, Berlin/Heidelberg/New York, pp 305–423

    Google Scholar 

  52. Lockwood M, Stamper R, Wild MN (1999) A doubling of the sun’s coronal magnetic field during the last 100 years. Nature 399:437–439

    Article  CAS  Google Scholar 

  53. Lockwood M, Stamper R (1999) Long-term drift of the coronal source magnetic flux and the total solar irradiance. Geophys Res Lett 26:2461–2464. doi:10.1029/1999GL900485

    Article  Google Scholar 

  54. Solanki SK, Schüssler M, Fligge M (2000) Secular evolution of the Sun’s magnetic field since the Maunder minimum. Nature 480:445–446. doi:10.1038/35044027

    Article  CAS  Google Scholar 

  55. Solanki SK, Schüssler M, Fligge M (2001) Secular evolution of the Sun’s magnetic flux. Astron Astrophys 383:706–712. doi:10.1051/0004-6361:20011790

    Article  Google Scholar 

  56. Vieira LEA, Solanki SK (2010) Evolution of the solar magnetic flux on time scales of years to millennia. Astron Astrophys 509(1):A100. doi:10.1051/0004-6361/200913276

    Article  Google Scholar 

  57. Lean J, Wang Y-M, Sheeley NR Jr (2002) The effect of increasing solar activity on the Suns total and open magnetic flux during multiple cycles: implications for solar forcing of climate. Geophys Res Lett 29(24):2224

    Article  Google Scholar 

  58. Wang Y-M, Lean JL, Sheeley NR Jr (2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538. doi:10.1086/429689

    Article  Google Scholar 

  59. Willson RC, Mordvinov AV (2003) Secular total solar irradiance trend during solar cycles 21–23. Geophys Res Lett 30:1199–1202. doi:10.1029/2002GL016038

    Article  Google Scholar 

  60. Scafetta N, Willson RC (2009) ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys Res Lett 36:L05701. doi:10.1029/2008GL036307

    Article  Google Scholar 

  61. Krivova NA, Solanki SK, Wenzler T (2009) ACRIM-gap and total solar irradiance revisited: is there a secular trend between 1986 and 1996? Geophys Res Lett 36:L20101. doi:10.1029/2009GL040707

    Article  Google Scholar 

  62. Wenzler T, Solanki SK, Krivova NA (2009) Reconstructed and measured total solar irradiance: is there a secular trend between 1978 and 2003? Geophys Res Lett 36:L11102. doi:10.1029/2009GL037519

    Article  Google Scholar 

  63. Lean JL, Rottman GJ, Kyle HL, Woods TN, Hickey JR, Puga LC (1997) Detection and parameterization of variations in solar midand near-ultraviolet radiation (200–400 nm). J Geophys Res 102(29):939

    Google Scholar 

  64. Hansen J, Ruedy R, Glascoe J, Sato Mki (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022. doi:10.1029/1999JD900835

    Article  Google Scholar 

  65. Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  66. Scafetta N (2009) Empirical analysis of the solar contribution to global mean air surface temperature change. J Atmos Solar Terr Phys 71:1916–1923. doi:10.1016/j.jastp. 2009.07.007

    Article  Google Scholar 

  67. Harder JW, Fontenla JM, Pilewskie P, Richard EC, Woods TN (2009) Trends in solar spectral irradiance variability in the visible and infrared. Geophys Res Lett 36:L07801. doi:10.1029/2008GL036797

    Article  CAS  Google Scholar 

  68. Krivova NA, Solanki SK, Wenzler T, Podlipnik B (2009) Reconstruction of solar UV irradiance since 1974. J Geophys Res 114:D00I04. doi:10.1029/2009JD012375

    Article  Google Scholar 

  69. Lean J (2000) Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys Res Lett 27:2425–2428

    Article  CAS  Google Scholar 

  70. Lean JL (2010) How bright is the sun? How does it vary? Why do we care? Bull Am Meteor Soc (in press)

    Google Scholar 

  71. Foukal P, Bertello L, Livingston WC, Pevtsov AA, Singh J, Tlatov AG, Ulrich RK (2009) A century of Solar Ca II measurements and their implication for solar UV driving of climate. Sol Phys 255(2):229–238

    Article  CAS  Google Scholar 

  72. Lockwood M, Bell C, Woollings T, Harrison RG, Gray LJ, Haigh JD (2010) Top-down solar modulation of climate: evidence for centennial-scale change. Environ Res Lett 5:034008. doi:10.1088/1748-9326/5/3/034008

    Article  CAS  Google Scholar 

  73. Ermolli I, Solanki SK, Tlatov AG, Krivova NA, Ulrich RK, Singh J (2009) Comparison among Ca ii K spectroheliogram time series with an application to solar activity studies. Astrophys J 698(2):1000–1009

    Article  CAS  Google Scholar 

  74. Tlatov AG, Pevtsov AA, Singh JA (2009) New method of calibration of photographic plates from three historic data sets. Sol Phys 255(2):239–251

    Article  CAS  Google Scholar 

  75. Cattaneo F, Hughes DW (2001) Solar dynamo theory: a new look at the origin of small-scale magnetic fields. Astron Geophys 42:3.18–3.22

    Article  Google Scholar 

  76. Kuhn JR, Libbrecht KG, Dicke RH (1988) The surface temperature of the Sun and changes in the solar constant. Science 242:908–911

    Google Scholar 

  77. Chapman GA, Dobias JJ, Walton SR (2008) On the variability of the apparent solar radius. Astrophys J 681:1698–1702. doi:10.1086/588512

    Article  Google Scholar 

  78. Sofia S, Basu S, Demarque P, Li L, Thuillier G (2005) The nonhomologous nature of solar diameter variations. Astrophys J 632:L147–L150

    Article  Google Scholar 

  79. Egidi A, Caccin B, Sofia S, Heaps W, Hoegy W, Twigg L (2006) High-precision measurements of the solar diameter and oblateness by the Solar Disk Sextant (SDS) experiment. Sol Phys 235(1/2):407–418

    Article  Google Scholar 

  80. Bruls JHMJ, Solanki SK (2004) Apparent solar radius variations: the influence of magnetic network and plage. Astron Astrophys 427:735–743. doi:10.1051/0004-6361:20041311

    Article  Google Scholar 

  81. Lefebvre S, Bertello L, Ulrich RK, Boyden JE, Rozelot JP (2006) Solar radius measurements at Mount Wilson observatory. Astrophys J 649(1):444–451

    Article  Google Scholar 

  82. Djafer D, Thuillier G, Sofia S (2008) A comparison among solar diameter measurements carried out from the ground and outside Earth’s atmosphere. Astrophys J 676(1):651–657

    Article  Google Scholar 

  83. Lefebvre S, Kosovichev AG, Rozelot JP (2007) Helioseismic test of nonhomologous solar radius changes with the 11 year activity cycle. Astrophys J 658:L135–L138

    Article  Google Scholar 

  84. Kuhn JR, Bush RI, Emilio M, Scherrer PH (2004) On the constancy of the solar diameter. II. Astrophys J 613(2):1241–1252

    Article  Google Scholar 

  85. Noël F (2004) Solar cycle dependence of the apparent radius of the Sun. Astron Astrophys 413:725–732

    Article  Google Scholar 

  86. Rouillard AP, Lockwood M (2004) Oscillations in the open solar magnetic flux with period 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding. Ann Geophys 22:4381–4396

    Article  Google Scholar 

  87. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B:985–992

    CAS  Google Scholar 

  88. Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701. doi:10.1029/2008GL034864

    Article  Google Scholar 

  89. Lockwood M (2006) What do cosmogenic isotopes tell us about past solar forcing of climate? Space Sci Rev 125:95–109. doi:10.1007/s11214-006-9049-2

    Article  CAS  Google Scholar 

  90. Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36:L19704. doi:10.1029/2009GL040142

    Article  Google Scholar 

  91. McCracken KG, Beer J (2007) Long-term changes in the cosmic ray intensity at Earth, 1428–2005. J Geophys Res 112:A10101. doi:10.1029/2006JA012117

    Article  CAS  Google Scholar 

  92. Muscheler R, Joos F, Beer J, Muller SA, Vonmoos M, Snowball I (2007) Solar activity during the last 1000 yr inferred from radionucleide records. Quat Sci Rev 26:82–97

    Article  Google Scholar 

  93. Steinhilber F, Abreu JA, Beer J (2008) Solar modulation during the Holocene. Astrophys Space Sci Trans 4:1–6

    Article  Google Scholar 

  94. Usoskin IG, Schuessler M, Solanki SK, Mursula K (2005) Solar activity, cosmic rays, and Earth’s temperature: a millennium-scale comparison. J Geophys Res 110:A10102. doi:10.1029/2004JA010946

    Article  Google Scholar 

  95. Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to the previous 11000 years. Nature 431:1084–1087. doi:10.1038/nature02995

    Article  CAS  Google Scholar 

  96. Abreu JA, Beer J, Steinhilber F, Tobias SM, Weiss NO (2008) For how long will the current grand maximum of solar activity persist? Geophys Res Lett 35(20):L20109

    Article  Google Scholar 

  97. Boberg F, Lundstedt H (2002) Solar wind variations related to fluctuations of the North Atlantic Oscillation. Geophys Res Lett 29:1718

    Article  Google Scholar 

  98. Lu H, Jarvis MJ, Hibbins RE (2008) Possible solar wind effect on the northern annular mode and northern hemispheric circulation during winter and spring. J Geophys Res 113:D23104. doi:10.1029/2008JD010848

    Article  CAS  Google Scholar 

  99. Bochníček J, Hejda P (2005) The winter NAO pattern changes in association with solar and geomagnetic activity. J Atmos Sol Terr Phys 67:17–32

    Article  Google Scholar 

  100. Thejll P, Christiansen B, Gleisner H (2003) On correlations between the North Atlantic Oscillation, geopotential heights and geomagnetic activity. Geophys Res Lett 30(6):1347. doi:10.1029/2002GL016598

    Article  Google Scholar 

  101. Davis OK, Shafer DS (1992) An Early-Holocene maximum for the Arizona monsoon recorded at Montezuma Well, central Arizona. Palaeogeogr Palaeoclimatol Palaeoecol 92:107–119. doi:10.1016/0031-0182(92)90137-T

    Article  Google Scholar 

  102. Jirikowic JL, Kalin RM, Davis OK (1993) Tree-ring 14C as an indicator of climate change. In: Climatic change in continental isotopic records, vol 78, AGU geophysical monograph. American Geophysical Union, Washington, pp 353–366

    Chapter  Google Scholar 

  103. Davis OK (1994) The correlation of summer precipitation in the southwestern USA with isotopic records of solar activity during the Medieval Warm Period. Clim Change 26:271–287. doi:10.1007/BF01092418

    Article  Google Scholar 

  104. Crowley TJ, Kim K-Y (1996) Comparison of proxy records of climate change and solar forcing. Geophys Res Lett 23:359–362

    Article  Google Scholar 

  105. van Geel B, Van der Plicht J, Kilian MR, Klaver ER, Kouwenberg JHM, Renssen H, Reynaud-Farrera I, Waterbolk HT (1998) The sharp rise of ∆14C ca. 800 cal BC: possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40:535–550

    CAS  Google Scholar 

  106. de Putter T, Loutre MF, Wansard G (1998) Decadal periodicities of Nile river historical discharge (A.D. 622–1470) and climatic implications. Geophys Res Lett 25:3193–3196

    Article  Google Scholar 

  107. Beer J, van Geel B (1998) Holocene climate change and the evidence for solar and other forcings. In: Batterbee RW, Binney HA (eds) Natural climate variability and global warming: a holocene perspective. Wiley-Blackwell, Oxford, pp 138–162

    Google Scholar 

  108. Yu Z, Ito E (1999) Possible solar forcing of century-scale drought frequency in the northern Great Plains. Geology 27:263–266. doi:10.1130/0091-7613(1999) 027<0263:PSFOCSO2.3>CO;2

    Article  Google Scholar 

  109. Verschuren D, Laird KR, Cumming BF (2000) Rainfall and drought in equatorial east Africa during the past 1100 years. Nature 403:410–414

    Article  CAS  Google Scholar 

  110. Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffman S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136. doi:10.1126/science.1065680

    Article  CAS  Google Scholar 

  111. Neff U, Burns SJ, Mangini A, Mudelsee M, Fleitmann D, Matter A (2001) Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411:290–293. doi:10.1038/35077048

    Article  CAS  Google Scholar 

  112. Speranza A, van Geel B, van der Plicht J (2002) Evidence for solar forcing of climate change at ca. 850 cal BC from a Czech peat sequence. Glob Planet Change 35:51–65

    Article  Google Scholar 

  113. Mauquoy D, van Geel B, Blaauw M, van der Plicht J (2002) Evidence from northwest European bogs shows “Little Ice Age” climatic changes driven by variations in solar activity. Holocene 12:1–6

    Article  Google Scholar 

  114. Hu FS, Kaufman D, Yoneji S, Nelson D, Shemesh A, Huang Y, Tian J, Bond G, Clegg B, Brown T (2003) Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301:1890–1893. doi:10.1126/science.1088568

    Article  CAS  Google Scholar 

  115. Sarnthein M, van Kreveld S, Erlenkeuser H, Grootes PM, Kucera M, Pflaumann U, Schulz M (2003) Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75° N. Boreas 32:447–461. doi:10.1080/03009480301813

    Article  Google Scholar 

  116. Christla M, Manginia A, Holzkäampera S, Spötlb C (2004) Evidence for a link between the flux of galactic cosmic rays and Earth’s climate during the past 200 000 years. J Atmos Sol Terr Phys 66:313–322. doi:10.1016/j.jastp. 2003.12.004

    Article  CAS  Google Scholar 

  117. van der Plicht J, van Geel B, Bohncke SJP, Bos JAA, Blaauw M, Speranza AOM, Muscheler R, Björck S (2004) The Preboreal climate reversal and a subsequent solar-forced climate shift. J Quat Sci 19:263–269

    Article  Google Scholar 

  118. Prasad S, Vos H, Negendank JFW, Waldmann N, Goldstein SL, Stein M (2004) Evidence from Lake Lisan of solar influence on decadal to centennial climate variability during marine oxygen isotope stage 2. Geology 32:581–584. doi:10.1130/G20553.1

    Article  Google Scholar 

  119. Wei J, Wang H (2004) A possible role of solar radiation and ocean in the Mid-Holocene east Asian monsoon climate. Adv Atmos Sci 21:1–12

    Article  CAS  Google Scholar 

  120. Wiles GC, D’Arrigo RD, Villalba R, Calkin PE, Barclay DJ (2004) Century-scale solar variability and Alaskan temperature change over the past millennium. Geophys Res Lett 31:L15203

    Article  Google Scholar 

  121. Maasch K, Mayewski PA, Rohling E, Stager C, Karlen K, Meeker LD, Meyerson E (2005) Climate of the past 2000 years. Geogr Ann A 87:7–15. doi:10.1111/j.0435-3676.2005.00241.x

    Article  Google Scholar 

  122. Ammann CM et al (2007) Solar influence on climate during the past millenium: results from transient simulations with the NCAR climate system model. Proc Natl Acad Sci 104:3713–3718

    Article  Google Scholar 

  123. Mayewski PA et al (2005) Solar forcing of the polar atmosphere. Ann Glaciol 41:147–154

    Article  CAS  Google Scholar 

  124. Wang Y et al (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857. doi:10.1126/science.1106296

    Article  CAS  Google Scholar 

  125. Bard E, Frank M (2006) Climate change and solar variability: what’s new under the Sun? Earth Planet Sci Lett 248:1–14. doi:10.1016/j.epsl.2006.06.016

    Article  CAS  Google Scholar 

  126. Ruzmaikin JF, Yung YL (2006) Is solar variability reflected in the Nile River? J Geophys Res 111:D21114

    Article  Google Scholar 

  127. Polissar PJ, Abbott MB, Wolfe AP, Bezada M, Rull V, Bradley RS (2006) Solar modulation of Little Ice Age climate in the tropical Andes. Proc Natl Acad Sci 103:8937–8942. doi:10.1073/pnas.0603118103

    Article  CAS  Google Scholar 

  128. Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson KR (2008) A test of climate, Sun, and culture relationships from an 1810-year Chinese cave record. Science 322(5903):940–942. doi:10.1126/science.1163965

    Article  CAS  Google Scholar 

  129. Beer J, Vonmoos M, Müscheler R (2006) Solar variability over the past several millennia. Space Sci Rev 125:67–79. doi:10.1007/s11214-006-9047-4

    Article  Google Scholar 

  130. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300:1737–1739

    Article  CAS  Google Scholar 

  131. Vonmoos M, Beer J, Muscheler R (2006) Large variations in Holocene solar activity: constraints from Be-10 in the Greenland Ice Core Project ice core. J Geophys Res 111:A10105. doi:10.1029/2005JA011500

    Article  CAS  Google Scholar 

  132. Field CV, Schmidt GA, Koch D, Salyk C (2006) Modeling production and climate-related impacts on Be-10 concentrations in ice cores. J Geophys Res 111:D15107. doi:10.1029/2005JD006410

    Article  Google Scholar 

  133. Aldahan A, Hedfors J, Possnert G, Kulan A, Berggren A-M, Söderström C (2008) Atmospheric impact on beryllium isotopes as solar activity proxy. Geophys Res Lett 35:L21812. doi:10.1029/2008GL035189

    Article  CAS  Google Scholar 

  134. Heikkila U, Beer J, Feichter J (2008) Modeling cosmogenic radionucleides Be-10 and Be-7 during the Maunder Minimum using the ECHAM5-HAM General Circulation Model. Atmos Chem Phys 8:2797–2809

    Article  CAS  Google Scholar 

  135. Shindell DT, Faluvegi G, Miller RL, Schmidt GA, Hansen JE, Sun S (2006) Solar and anthropogenic forcing of tropical hydrology. Geophys Res Lett 33:L24706. doi:10.1029/2006GL027468

    Article  Google Scholar 

  136. Tric E (1992) Paleointensity of the geomagnetic field during the last 80,000 years. J Geophys Res 97:9337–9351

    Article  Google Scholar 

  137. Baumgartner S, Beer J, Masarik J, Wagner G, Meynadier L, Synal H-A (1998) Geomagnetic Modulation of the 36Cl Flux in the GRIP Ice Core Greenland. Science 279:1330–1331

    Article  CAS  Google Scholar 

  138. Laj C et al (2001) North Atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Philos Trans R Soc Lond 358:1009–1025

    Google Scholar 

  139. Bhattacharyya A, Mitra B (1997) Changes in cosmic ray cut-off rigidities due to secular variations of the geomagnetic field. Ann Geophys 15:734–739

    Article  CAS  Google Scholar 

  140. Damon PE, Lerman JC, Long A (1978) Temporal fluctuations of atmospheric 14C: causal factors and implications. Ann Rev Earth Planet Sci 6:457

    Article  CAS  Google Scholar 

  141. van Geel B, Mook WG (1989) High resolution 14C dating of organic deposits using natural atmospheric 14C variations. Radiocarbon 31:151–155

    CAS  Google Scholar 

  142. Kilian MR, van der Plicht J, van Geel B (1995) Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quat Sci Rev 14:959–966

    Article  Google Scholar 

  143. Blaauw M, Heuvelink GBM, Mauquoy D, van der Plicht J, van Geel B (2003) A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals. Quat Sci Rev 22:1485–1500

    Article  Google Scholar 

  144. Friis-Christensen E, Lassen K (1991) Length of the solar cycle: an indicator of solar activity closely associated with climate. Science 245:698–700. doi:10.1126/science.254.5032.698

    Article  Google Scholar 

  145. Laut P (2003) Solar activity and terrestrial climate: an analysis of some purported correlations. J Atmos Sol Terr Phys 65:801–812

    Article  Google Scholar 

  146. Thejll P, Lassen K (2000) Solar forcing of the Northern hemisphere land air temperature: new data. J Atmos Terr Phys 62(13):1207–1213

    Article  Google Scholar 

  147. Benestad RE (2005) A review of the solar cycle length estimates. Geophys Res Lett 32:L15714. doi:10.1029/2005GL023621

    Article  Google Scholar 

  148. Scafetta N, West BJ (2007) Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600. J Geophys Res 112(D24):D24S03

    Article  Google Scholar 

  149. Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  150. Solomon S, Quin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignotr M, Miller HL (eds) (2007) Climate change: the physical science basis, Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  151. Solanki SK, Krivova NA (2003) Can solar variability explain global warming since 1970? J Geophys Res 108(A5):1200

    Article  Google Scholar 

  152. Erlykin AD, Sloan T, Wolfendale AW (2009) Solar activity and the mean global temperature. Environ Res Lett 4(1):014006

    Article  Google Scholar 

  153. Stott PA, Jones GS, Mitchell JF (2003) Do models underestimate the solar contribution to recent climate change? J Climate 16:4079–4093

    Article  Google Scholar 

  154. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    Article  CAS  Google Scholar 

  155. Cubasch U, Voss R (2000) The influence of total solar irradiance on climate. Space Sci Rev 94:185–198

    Article  CAS  Google Scholar 

  156. Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean–atmosphere general circulation model. Climate Dyn 13:757–767. doi:10.1007/s003820050196

    Article  Google Scholar 

  157. Ingram WJ (2006) Detection and attribution of climate change, and understanding solar influence on climate. Space Sci Rev 125:199–211. doi:10.1007/s11214-006-9057-2

    Article  Google Scholar 

  158. Camp CD, Tung KK (2007) Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophys Res Lett 34:L14703

    Article  Google Scholar 

  159. Gleisner H, Thejll P, Stendel M, Kaas E, Machenhauer B (2005) Solar signals in tropospheric re-analysis data: comparing NCEP/NCAR and ERA40. J Atmos Sol Terr Phys 67(8–9):785–791

    Article  Google Scholar 

  160. Gleisner H, Thejll P (2003) Patterns of tropospheric response to solar variability. Geophys Res Lett 30:17129

    Article  Google Scholar 

  161. Frame T, Gray LJ (2010) The 11-year solar cycle in ERA-40 data: an update to 2008. J Climate 23:2213–2222

    Article  Google Scholar 

  162. Crooks SA, Gray LJ (2005) Characterisation of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J Climate 18:996–1015

    Article  Google Scholar 

  163. Ruzmaikin A, Feynman J (2002) Solar influence on a major mode of atmospheric variability. J Geophys Res 107:4209

    Article  Google Scholar 

  164. Lee JN, Hameed S (2007) The Northern Hemisphere annular mode in summer: its physical significance and its relation to solar activity variations. J Geophys Res 112:D15111

    Article  Google Scholar 

  165. Lee JN, Hameed S, Shindell DT (2008) Northern annular mode in summer and its relation to solar activity variations in the GISS Model E. J Atmos Sol Terr Phys 70:730–741

    Article  Google Scholar 

  166. Kodera K (2002) Solar cycle modulation of the North Atlantic Oscillation: implications in the spatial structure of the NAO. Geophys Res Lett 29(8):1218. doi:10.1029/2001GL014557

    Article  Google Scholar 

  167. Kodera K, Kuroda Y (2005) A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation. J Geophys Res 110:D02111. doi:10.1029/2004JD005258

    Article  Google Scholar 

  168. Kodera K (2004) Solar influence on the Indian Ocean monsoon through dynamical processes. Geophys Res Lett 31:L24209. doi:10.1029/2004GL020928

    Article  Google Scholar 

  169. Kuroda Y, Kodera K (2005) Solar cycle modulation of the Southern Annular Mode. Geophys Res Lett 32:L13802. doi:10.1029/2005GL022516

    Article  Google Scholar 

  170. Salby ML, Callaghan PF (2006) Evidence of the solar cycle in the tropical troposphere. J Geophys Res 111:D21113. doi:10.1029/2006JD007133

    Article  Google Scholar 

  171. Kodera K, Shibata K (2006) Solar influence on the tropical stratosphere and troposphere in the northern summer. Geophys Res Lett 33:L19704. doi:10.1029/2006GL026659

    Article  Google Scholar 

  172. Brönnimann S, Ewen T, Griesser T, Jenne R (2007) Multidecadal signal of solar variability in the upper troposphere during the 20th century. Space Sci Rev 125:305–315

    Article  Google Scholar 

  173. Kodera K, Coughlin K, Arakawa O (2007) Possible modulation of the connection between the Pacific and Indian Ocean variability by the solar cycle. Geophys Res Lett 34:L03710. doi:10.1029/2006GL027827

    Article  Google Scholar 

  174. Meehl GA, Washington WM, Wigley TML, Arblaster JM, Dai A (2003) Solar and greenhouse gas forcing and climate response in the twentieth century. J Climate 16:426–444. doi:10.1175/15200442

    Article  Google Scholar 

  175. Meehl GA, Arblaster JM, Branstator G, van Loon H (2008) A coupled air-sea response mechanism to solar forcing in the Pacific region. J Climate 21:2883–2897

    Article  Google Scholar 

  176. Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H (2009) Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325:1114–1118. doi:10.1126/science.1172872

    Article  CAS  Google Scholar 

  177. van Loon H, Meehl GA, Shea DJ (2007) Coupled air-sea response to solar forcing in the Pacific region during northern winter. J Geophys Res 112:D02108. doi:10.1029/2006JD007378

    Article  Google Scholar 

  178. van Loon H, Meehl GA (2008) The response in the Pacific to the Sun’s decadal peaks and contrasts to cold events in the Southern Oscillation. J Atmos Sol Terr Phys 70:1046–1055

    Article  Google Scholar 

  179. White WB, Liu Z (2008) Non-linear alignment of El Nino to the 11-yr solar cycle. Geophys Res Lett 35:L19607. doi:10.1029/2008GL034831

    Article  Google Scholar 

  180. Emile-Geay J, Cane M, Seager R, Kaplan A, Allmasi P (2007) El Niño as a mediator of the solar influence on climate. Paleoceanography 22:PA3210. doi:10.1029/2006PA001304

    Article  Google Scholar 

  181. White WB, Cayan DR, Lean J (1998) Global upper ocean heat storage response to radiative forcing from changing solar irradiance and increasing greenhouse gas/aerosol concentrations. J Geophys Res 103:21355–21366

    Article  Google Scholar 

  182. White WB, Lean J, Cayan DR, Dettinger MD (1997) Response of global upper ocean temperature to changing solar irradiance. J Geophys Res 102:3255–3266

    Article  Google Scholar 

  183. White WB, Dettinger MD, Cayan DR (2003) Sources of global warming in the upper-ocean on decadal period scales. J Geophys Res 108(C8):3248. doi:10.1029/2002JC001396

    Article  Google Scholar 

  184. White WB, Liu Z (2008) Resonant response of the quasi-decadal oscillation to the 11-yr period signal in the Sun’s irradiance. J Geophys Res 113:C01002. doi:10.1029/2006JC004057

    Article  Google Scholar 

  185. Shindell DT, Schmidt GA, Miller RL, Rind D (2001) Northern hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J Geophys Res 106:7193–7210

    Article  CAS  Google Scholar 

  186. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar Forcing of Regional Climate Change during the Maunder Minimum. Science 294(5549):2149–2152

    Article  CAS  Google Scholar 

  187. Shindell DT, Schmidt GA, Miller RL, Mann ME (2003) Volcanic and solar forcing of climate change during the preindustrial era. J Climate 16:4094–4107

    Article  Google Scholar 

  188. Mann ME, Zhang Z, Rutherford S, Bradley R, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures of the Little Ice Age and Medieval climate anomaly and plausible dynamical origins. Science 326:1256–1260

    Article  CAS  Google Scholar 

  189. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the Medieval climate anomaly. Science 324:78–80

    Article  CAS  Google Scholar 

  190. Goosse H, Arzel O, Luterbacher J, Mann ME, Renssen H, Riedwyl N, Timmermann A, Xoplaki E, Wanner H (2006) The origin of the European Medieval Warm Period. Clim Past Discuss 2:99–113

    Article  Google Scholar 

  191. North GR, Stevens MJ (1998) Detecting climate signals in the surface temperature record. J Climate 11:563–577

    Article  Google Scholar 

  192. Kossobokov V, Le Mouël J-L, Courtillot V (2010) A statistically significant signature of multidecadal solar activity changes in atmospheric temperatures at three European stations. J Atmos Sol Terr Phys 72:595–606. doi:10.1016/j.jastp. 2010.02.016

    Article  Google Scholar 

  193. Le Mouël J-L, Courtillot V, Blanter E, Shnirman M (2008) Evidence for a solar signature in 20th-century temperature data from the USA and Europe. C R Geosci 340:421–430

    Article  Google Scholar 

  194. Le Mouël J-L, Blanter E, Shnirman M, Courtillot V (2009) Evidence for solar forcing in variability of temperature and pressure in Europe. J Atmos Sol Terr Phys 71:1309–1321. doi:10.1016/j.jastp. 2009.05.006

    Article  Google Scholar 

  195. Le Mouël J-L, Kossobokov V, Courtillot V (2010) A solar pattern in the longest temperature series from three stations in Europe. J Atmos Sol Terr Phys 72:62–76. doi:10.1016/j.jastp. 2009.10.009

    Article  CAS  Google Scholar 

  196. Karoly DJ, Stott PA (2006) Anthropogenic warming of central England temperature. Atmos Sci Lett 7:81–85. doi:10.1002/asl.136, 2006

    Article  Google Scholar 

  197. Luterbacher J et al (2001) The late Maunder Minimum (1675–1715) – a key period for studying decadal scale climatic change in Europe. Clim Change 49:441–462

    Article  Google Scholar 

  198. Lockwood M, Harrison RG, Woollings T, Solanki SK (2010) Are cold winters in Europe associated with low solar activity? Environ Res Lett 5:024001. doi:10.1088/1748-9326/5/2/024001

    Article  CAS  Google Scholar 

  199. Wanner H, Pfister C, Brázdil R, Frich P, Frydendahl K, Jónsson T, Kington J, Lamb HH, Rosenørn S, Wishman E (1995) Wintertime European circulation patterns during the late Maunder Minimum cooling period (1675–1704). Theor Appl Climatol 51:167–175. doi:10.1007/BF00867443

    Article  Google Scholar 

  200. Barriopedro D, Garcia-Herrera R, Huth R (2008) Solar modulation of Northern Hemisphere winter blocking. J Geophys Res 113:D14118. doi:10.1029/2008JD009789

    Article  Google Scholar 

  201. Huth R, Pokorná L, Bochníček J, Hejda P (2006) Solar cycle effects on modes of low-frequency circulation variability. J Geophys Res 111:D22107

    Article  Google Scholar 

  202. Huth R, Kyselý J, Bochníček J, Hejda P (2008) Solar activity affects the occurrence of synoptic types over Europe. Ann Geophys 26:1999–2004

    Article  Google Scholar 

  203. Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32:L18715

    Article  Google Scholar 

  204. Rind D, Shindell D, Perlwitz J, Lerner J, Lonergan P, Lean J, McLinden C (2004) The relative importance of solar and anthropogenic forcing of climate change between the Maunder Minimum and the present. J Climate 17:906–929

    Article  Google Scholar 

  205. Zorita E, von Storch H, Gonzalez-Rouco F, Cubasch U, Luterbacher J, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere-ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteor Zeit 13:271–289

    Article  Google Scholar 

  206. Stendel M, Mogensen IA, Christensen JH (2006) Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model. Climate Dyn 26(1):1–15

    Article  Google Scholar 

  207. Rind D, Lean J, Lerner J, Lonergan P, Leboissitier A (2008) Exploring the stratospheric/tropospheric response to solar forcing. J Geophys Res Atmos 113:D24103

    Article  Google Scholar 

  208. Baldwin MP (2003) Comment on “Tropospheric response to stratospheric perturbations in a relatively simple general circulation model” by Lorenzo M. Polvani and Paul J. Kushner. Geophys Res Lett 30(15):1812. doi:10.1029/2003GL017793

    Article  Google Scholar 

  209. Thompson DWJ, Kennedy J, Wallace JM, Jones PD (2008) A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453(7195):646–649

    Article  CAS  Google Scholar 

  210. Hegerl GC, Crowley TJ, Baum SK, Kim KY, Hyde WT (2003) Detection of volcanic, solar and greenhouse gas signals in paleo-reconstructions of Northern Hemisphere temperature. Geophys Res Lett 30:1242

    Article  Google Scholar 

  211. Shepherd TG (2002) Issues in stratosphere-troposphere coupling. J Meterol Soc Jpn 80:769–792

    Article  Google Scholar 

  212. Hartley DE, Villarin JT, Black RX, Davis CA (1998) A new perspective on the dynamical link between the stratosphere and troposphere. Nature 391:471–474

    Article  CAS  Google Scholar 

  213. Song YC, Robinson WA (2004) Dynamical mechanisms for stratospheric influences on the troposphere. J Atmos Sci 61:1711–1725

    Article  Google Scholar 

  214. Matthes K, Kuroda Y, Kodera K, Langematz U (2006) Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J Geophys Res 111:D06108. doi:10.1029/2005JD006283

    Article  Google Scholar 

  215. Baldwin MP, Dunkerton TJ (2001) The solar cycle and stratosphere-troposphere dynamical coupling. Science 294:581–584

    Article  CAS  Google Scholar 

  216. Haigh JD (1996) The impact of solar variability on climate. Science 272:981–984

    Article  CAS  Google Scholar 

  217. Haigh JD (2001) Climate variability and the influence of the Sun. Science 294:2109–2111. doi:10.1126/science.1067013

    Article  CAS  Google Scholar 

  218. Gray LJ, Crooks S, Pascoe C, Sparrow S, Palmer M (2004) Solar and QBO Influences on the Timing of Stratospheric Sudden Warmings. J Atmos Sci 61:2777–2796

    Article  Google Scholar 

  219. Plumb RA, Semeniuk K (2003) Downward propagation of extra-tropical zonal wind anomalies. J Geophys Res 108:4223. doi:10.1029/2002JD002773

    Article  Google Scholar 

  220. Polvani LM, Kushner PJ (2002) Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys Res Lett 29:1114. doi:10.1029/2001GL014284

    Article  Google Scholar 

  221. Barriopedro D, García-Herrera R, Lupo AR, Hernández E (2006) A climatology of Northern Hemisphere blocking. J Climate 19:1042–1063

    Article  Google Scholar 

  222. Kushner PJ, Polvani LM (2004) Stratosphere-troposphere coupling in a relatively simple AGCM: the role of eddies. J Climate 17:629–639

    Article  Google Scholar 

  223. Simpson IR, Blackburn M, Haigh JD (2009) The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J Atmos Sci 66(5):1347–1365

    Article  Google Scholar 

  224. Perlwitz J, Harnik N (2003) Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J Climate 16:3011–3026

    Article  Google Scholar 

  225. Thompson DWJ, Baldwin MP, Solomon S (2005) Stratosphere-troposphere coupling in the Southern Hemisphere. J Atmos Sci 62:708–715

    Article  Google Scholar 

  226. Castanheira JM, Graf H-F (2003) North Pacific – North Atlantic relationships under stratospheric control? J Geophys Res 108(D1):4036

    Article  Google Scholar 

  227. Kuroda Y, Deushi M, Shibata K (2007) Role of solar activity in the troposphere-stratosphere coupling in the southern Hemisphere winter. Geophys Res Lett 34:L21704. doi:10.1029/2007GL030983

    Article  Google Scholar 

  228. Labitzke K, van Loon H (1988) Associations between the 11-year solar cycle, the QBO and the atmosphere, Part I: the troposphere and stratosphere in the northern hemisphere in winter. J Atmos Terr Phys 50:197–206

    Article  Google Scholar 

  229. Haigh JD, Blackburn M (2006) Solar influences on dynamical coupling between the stratosphere and troposphere. Space Sci Rev 125:331–344

    Article  Google Scholar 

  230. Haigh JD (1994) The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 370:544–546

    Article  Google Scholar 

  231. Poore RZ, Quinn TM, Verardo S (2004) Century-scale movement of the Atlantic Intertropical Convergence Zone linked to solar variability. Geophys Res Lett 31:L12214. doi:10.1029/2004GL019940

    Article  Google Scholar 

  232. Russell JM, Johnson TC (2007) Little Ice Age drought in equatorial Africa: intertropical convergence zone migrations and El-Nino Southern Oscillation variability. Geology 35:21–24

    Article  CAS  Google Scholar 

  233. Woollings T, Charlton-Perez A, Ineson S, Marshall AG, Masato G (2010) Associations between stratospheric variability and tropospheric blocking. J Geophys Res 115:D06108. doi:10.1029/2009JD012742

    Article  Google Scholar 

  234. Carslaw KS, Harrison RG, Kirkby J (2002) Cosmic rays, clouds and climate. Science 298:1732–1737. doi:10.1126/science.1076964

    Article  CAS  Google Scholar 

  235. Kirkby J (2007) Cosmic rays and climate. Surv Geophys 28(5/6):333–375

    Article  Google Scholar 

  236. Charlson RJ, Valero FPJ, Seinfeld JH (2005) In search of balance. Science 308(5723):806–807. doi:10.1126/science.1108162

    Article  Google Scholar 

  237. Pallé E, Goode PR, Montañés-Rodríguez P (2009) Interannual variations in Earth’s reflectance 1999–2007. J Geophys Res 114:D00D03. doi:10.1029/2008JD010734

    Article  Google Scholar 

  238. Svensmark H, Friis-Christensen E (1997) Variations of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships. J Atmos Terr Phys 59:1225–1232

    Article  CAS  Google Scholar 

  239. Svensmark H (2007) Cosmoclimatology: a new theory emerges. Astron Geophys 48:118–124. doi:10.1111/j.1468-4004.2007.48118.x

    Article  Google Scholar 

  240. Marsh N, Svensmark H (2000) Cosmic rays, clouds, and climate. Space Sci Rev 94:215–230

    Article  CAS  Google Scholar 

  241. Marsh N, Svensmark H (2003) Galactic cosmic ray and El Nino Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties. J Geophys Res 108(D6):4195

    Article  Google Scholar 

  242. Marsh N, Svensmark H (2004) Comment on “Solar influences on cosmic rays and cloud formation: A reassessment” by Bomin Sun and Raymond S. Bradley. J Geophys Res 109:D14205. doi:10.1029/2003JD004063

    Article  Google Scholar 

  243. Sloan T, Wolfendale AW (2008) Testing the proposed causal link between cosmic rays and cloud cover. Environ Res Lett 3(2):024001. doi:10.1088/1748-9326/3/2/024001

    Article  Google Scholar 

  244. Kernthaler SC, Toumi R, Haigh JD (1999) Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys Res Lett 26(7):863–865

    Article  CAS  Google Scholar 

  245. Kristjánsson JE, Kristiansen J (2000) Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing? J Geophys Res 105(D9):11851–11863

    Article  Google Scholar 

  246. Sun B, Bradley RS (2002) Solar influences on cosmic rays and cloud formation: a reassessment. J Geophys Res 107(D14):4211. doi:10.1029/2001JD000560

    Article  Google Scholar 

  247. Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen HE, Paasonen P, Petäjä T, Dal Maso M, Aalto PP, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Hõrrak U, Plaß-Dülmer C, Birmili W, Kerminen V-M (2010) Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmos Chem Phys 10:1885–1898. doi:10.5194/acp-10-1885-2010

    Article  CAS  Google Scholar 

  248. Sun B, Bradley RS (2004) Reply to comment by N. D. Marsh and H. Svensmark on “Solar influences on cosmic rays and cloud formation: a reassessment”. J Geophys Res 109:D14206. doi:10.1029/2003JD004479

    Article  Google Scholar 

  249. Erlykin AD, Sloan T, Wolfendale AW (2010) Correlations of clouds, cosmic rays and solar irradiation over the Earth. J Atmos Sol Terr Phys 72(2/3):151–156. doi:10.1016/j.jastp. 2009.11.002) |

    Article  CAS  Google Scholar 

  250. Kristjánsson JE, Stjern CW, Stordal F et al (2008) Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data. Atmos Chem Phys 8(24):7373–7387

    Article  Google Scholar 

  251. de Jager C, Usoskin I (2006) On possible drivers of Sun-induced climate changes. J Atmos Sol Terr Phys 68:2053–2060

    Article  Google Scholar 

  252. Udelhofen PM, Cess RD (2001) Cloud cover variations over the United States: an influence of cosmic rays or Solar variability? Geophys Res Lett 28(13):2617–2620

    Article  Google Scholar 

  253. Voiculescu M, Usoskin IG, Mursula K (2006) Different response of clouds to solar input. Geophys Res Lett 33:L21802. doi:10.1029/2006GL027820

    Article  Google Scholar 

  254. Harrison R (2008) Discrimination between cosmic ray and solar irradiance effects on clouds, and evidence for geophysical modulation of cloud thickness. Proc R Soc A 464(2098):2575–2590

    Article  CAS  Google Scholar 

  255. Kazil J, Lovejoy ER, Barth MC, O’Brien K (2006) Aerosol nucleation over oceans and the role of galactic cosmic rays. Atmos Chem Phys 6:4905–4924

    Article  CAS  Google Scholar 

  256. Laken B, Wolfendale A, Kniveton D (2009) Cosmic ray decreases and changes in the liquid water cloud fraction over the oceans. Geophys Res Lett 36:L23803

    Article  CAS  Google Scholar 

  257. Klein SA, Hartmann DL (1993) Spurious changes in the ISCCP dataset. Geophys Res Lett 20:455–458

    Article  Google Scholar 

  258. Palmer MA, Gray LJ, Allen MR, Norton WA (2004) Solar forcing of climate: model results. Adv Space Res 34:343–348

    Article  CAS  Google Scholar 

  259. Haug G, Hughen K, Sigman D, Peterson L, Röhl U (2001) Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293:1304–1308. doi:10.1126/science.1059725

    Article  CAS  Google Scholar 

  260. Gallet Y, Genevey A (2007) The Mayans: climate determinism or geomagnetic determinism? EOS Trans Am Geophys Union 88:129–130. doi:10.1029/2007EO110001

    Article  Google Scholar 

  261. Gallet Y, Genevey A, Fluteau F (2005) Does Earth’s magnetic field secular variation control centennial climate change? Earth Planet Sci Lett 236:339–347. doi:10.1016/j.epsl.2005.04.045

    Article  CAS  Google Scholar 

  262. Gallet Y, Genevey A, Le Goff M, Fluteau F, Eshraghi SA (2006) Possible impact of the Earth’s magnetic field on the history of ancient civilizations. Earth Planet Sci Lett 246:17–26. doi:10.1016/j.epsl.2006.04.001

    Article  CAS  Google Scholar 

  263. Courtillot V, Gallet Y, Le Mouël J-L, Fluteau F, Genevey A (2007) Are there connections between the Earth’s magnetic field and climate? Earth Planet Sci Lett 253:328–339. doi:10.1016/j.epsl.2006.10.032

    Article  CAS  Google Scholar 

  264. Haug G, Günther D, Peterson L, Sigman D, Hughen K, Aeschlimann B (2003) Climate and the collapse of Maya civilization. Science 299:1731–1735. doi:10.1126/science.1080444

    Article  CAS  Google Scholar 

  265. Hodell D, Curtis J, Brenner M (1995) Possible role of climate in the collapse of Classic Maya civilization. Nature 375:391–394. doi:10.1038/375391a0

    Article  CAS  Google Scholar 

  266. Curtis J, Hodell D, Brenner M (1996) Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Mayan cultural evolution. Quat Res 46:37–47. doi:10.1006/qres.1996.0042

    Article  CAS  Google Scholar 

  267. de Menocal P (2001) Cultural response to climate change during the late Holocene. Science 292:667–673. doi:10.1126/science.1059827

    Article  CAS  Google Scholar 

  268. Harrison RG, Stephenson DB (2006) Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proc R Soc A 462:1221–1233. doi:10.1098/rspa.2005.1628

    Article  CAS  Google Scholar 

  269. Duplissy J, Enghoff MB, Aplin KL, Arnold F, Aufmhoff H, Avngaard M, Baltensperger U, Bondo T, Bingham R, Carslaw K, Curtius J, David A, Fastrup B, Gagne S, Hahn F, Harrison RG, Kellett B, Kirkby J, Kulmala M, Laakso L, Laaksonen A, Lillestol E, Lockwood M, Makela J, Makhmutov V, Marsh ND, Nieminen T, Onnela A, Pedersen E, Pedersen JOP, Polny J, Reichl U, Seinfeld JH, Sipila M, Stozhkov Y, Stratmann F, Svensmark H, Svensmark J, Veenhof R, Verheggen B, Viisanen Y, Wagner PE, Wehrle G, Weingartner E, Wex H, Wilhelmsson M, Winkler PM (2010) Results from the CERN pilot CLOUD experiment. Atmos Chem Phys 10(4):1635–1647

    Article  CAS  Google Scholar 

  270. Pierce JR, Adams PJ (2009) Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys Res Lett 36:L09820. doi:10.1029/2009GL037946

    Article  CAS  Google Scholar 

  271. Rycroft MJ, Israelsson S, Price C (2000) The global atmospheric electric circuit, solar activity and climate change. J Atmos Sol Terr Phys 62:1563–1576

    Article  CAS  Google Scholar 

  272. Harrison RG (2000) Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei. Space Sci Rev 94:381–396

    Article  CAS  Google Scholar 

  273. Harrison RG, Ambaum MHP (2008) Enhancement of cloud formation by droplet charging. Proc R Soc A 464:2561–2573

    Article  CAS  Google Scholar 

  274. Tinsley BA, Brown GM, Scherrer PH (1989) Solar variability influences on weather and climate: possible connections through cosmic ray-fluxes and storm intensification. J Geophys Res 94:14783–14792

    Article  Google Scholar 

  275. Kniveton DR, Tinsley BA, Burns GB, Bering EA, Troshichev OA (2008) Variations in global cloud cover and the fair-weather vertical electric field. J Atmos Sol Terr Phys 70:1633–1642

    Article  Google Scholar 

  276. Pudovkin MI, Veretenenko VS (1997) Effects of the galactic cosmic ray variations on the solar radiation input in the lower atmosphere. J Atmos Terr Phys 59(14):1739–1746

    Article  Google Scholar 

  277. Svensmark H, Bondo T, Svensmark J (2009) Cosmic rays decreases affect atmospheric aerosols and cloud. Geophys Res Lett 36:L15101. doi:10.1029/2009GL038429, 2009

    Article  CAS  Google Scholar 

  278. Brown BH (2008) Short-term changes in global cloud cover and in cosmic radiation. J Atmos Sol Terr Phys 70(7):1122–1131

    Article  Google Scholar 

  279. Mlynczak M et al (2003) The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002. Geophys Res Lett 30:2100. doi:10.1029/2003GL017693

    Article  Google Scholar 

  280. Siskind DE, Nedoluha GE, Randall CE, Fromm M, Russell JM III (2000) An assessment of Southern Hemisphere stratospheric NOx enhancements due to transport from the upper atmosphere. Geophys Res Lett 27:329–332

    Article  CAS  Google Scholar 

  281. Funke B, Lopez-Puertas M, Gil-Lopez S, von Clarmann T, Stiller G, Fischer H, Kellman S (2005) Downward transport of upper atmospheric NOx into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters. J Geophys Res 110:D24308. doi:10.1029/2005JD006463

    Article  CAS  Google Scholar 

  282. Callis LB, Natarajan M, Lambeth J (2000) Calculated upper stratospheric effects of solar UV flux and NOy variations during the 11-year solar cycle. Geophys Res Lett 27:3869–3872

    Article  CAS  Google Scholar 

  283. Jackman CH, DeLand MT, Labow GJ, Fleming EI, Lopez-Puertas M (2006) Satellite measurements of middle atmospheric impacts by solar proton events in solar cycle 23. Space Sci Rev 125:381–391

    Article  CAS  Google Scholar 

  284. Jackman CH, Marsh DR, Vitt FM, Garcia RR, Fleming EL, Labow GJ, Randall CE, Lopez-Puertas M, Funke B, von Clarmann T, Stiller GP (2008) Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmos Chem Phys 8:765–785

    Article  CAS  Google Scholar 

  285. Randall CE, Harvey V, Singleton CS, Bailey S, Bernath P, Codrescu M, Nakajima H, Russell JM III (2007) Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005. J Geophys Res 112:D08308. doi:10.1029/2006JD007696

    Article  CAS  Google Scholar 

  286. Randall CE, Harvey VL, Manney GL, Orsolini Y, Codrescu M, Sioris C, Brohede S, Haley C, Gordley L, Zawodny J, Russell J III (2005) Stratospheric effects of energetic particle precipitation in 2003–2004. Geophys Res Lett 32:L05802. doi:10.1029/2004GL022003

    Article  CAS  Google Scholar 

  287. Seppälä A, Randall CE, Clilverd MA, Rozanov E, Rodger CJ (2009) Geomagnetic activity and polar surface air temperature variability. J Geophys Res 114:A10312. doi:10.1029/2008JA014029

    Article  CAS  Google Scholar 

  288. Rozanov EV, Callis L, Schlesinger E, Yang F, Andronova N, Zubov VA (2005) Atmospheric response to NOy source due to Energetic electron precipitation. J Geophys Res 32:L14811. doi:10.1029/2005GL023041

    Google Scholar 

  289. Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:L08706. doi:10.1029/2009GL037810

    Article  Google Scholar 

  290. Knight J, Kenney JJ, Folland C, Harris G, Jones GS, Palmer M, Parker D, Scaife A, Stott P (2009) Do global temperature trends over the last decade falsify climate predictions. BAMS 90(8):S75–S79

    Google Scholar 

  291. Feulner G, Rahmstorf S (2010) On the effect of a new grand minimum of solar activity on the future climate on Earth. Geophys Res Lett 37:L05707. doi:10.1029/2010GL042710

    Article  Google Scholar 

  292. Lean JL, Rind DH (2009) How will Earth’s surface temperature change in future decades? Geophys Res Lett 36:L15708. doi:10.1029/2009GL038932

    Article  Google Scholar 

  293. Coughlin K (2004) Eleven-year solar cycle signal throughout the lower atmosphere. J Geophys Res 109:D21105

    Article  Google Scholar 

  294. Wagner G, Lvingstone DM, Masarik J, Muscheler R, Beer J (2001) Some results relevant to the discussion of a possible link between cosmic rays and the Earth’s climate. J Geophys Res 106(D4):3381–3387

    Article  Google Scholar 

  295. Woollings T, Lockwood M, Masato G, Bell C, Gray L (2010) Enhanced signature of solar variability in Eurasian winter climate. Geophys Res Lett 37:L20805. doi:10.1029/2010GL044601

    Article  Google Scholar 

  296. Calogovic J, Albert C, Arnold F, Beer J, Desorgher L, Flueckiger EO (2010) Sudden cosmic ray decreases: No change of global cloud cover. Geophys Res Lett 37:L03802. doi:10.1029/2009GL041327

    Article  CAS  Google Scholar 

  297. Katsman CA, van Oldenborgh GJ (2011) Tracing the upper ocean’s “missing heat”. Geophys Res Lett 38:L14610. doi:10.1029/2011GL048417

    Article  Google Scholar 

  298. Jarvis A, Li S (2011) The contribution of timescales to the temperature response of climate models. Clim Dyn 36:pp 523–531

    Article  Google Scholar 

  299. Foster G, Annan JD, Schmidt GA, Mann ME (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. J Geophys Res 113:D15102. doi:10.1029/2007JD009373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Lockwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Lockwood, M. (2012). Solar-Induced Climate Effects . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_446

Download citation

Publish with us

Policies and ethics