Skip to main content
  • 1135 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Air mass:

In meteorology, the air mass characterizes the transport of a large system away from where it originates (e.g., continental air mass, tropical air mass). In radiative transfer, the air mass (or, more accurately, “optical air mass”) is the idealized dimensionless optical pathlength of the solar photons from the limit of the atmosphere to a specific point at the surface, relative to the pathlength corresponding to the vertical of that same point. An air mass of 1 corresponds to an overhead sun, and an air mass of about 38 to a rising or setting sun. By extension, “air mass zero” refers to conditions just outside the limit of the atmosphere. See also “Optical mass.”

Albedo:

Overall dimensionless reflectance property of a surface, varying from 0 (perfectly black, nonreflecting surface) to 1 (perfectly white, totally reflecting surface).

Geographic information system (GIS):

A computerized system that is used to analyze various layers of data that are linked to geographical locations, by merging cartography and database technology.

Global positioning system (GPS):

A global navigation satellite system providing accurate location and time information at any location with an unobstructed line of sight to at least four dedicated satellites. Special GPS antennae can be used to derive information on the water vapor content of the atmosphere by measuring the propagation delay of the GPS signal.

Irradiance:

Radiant power of electromagnetic radiation per unit area of a surface on which it is incident. It is equivalent to the radiance of the electromagnetic source integrated over all angles. Spectral irradiance is usually measured in W m−2 nm−1.

Langley plot:

Method of extrapolation of ground-based spectral measurements (with sunphotometers, in particular) to obtain the corresponding extraterrestrial value at the same wavelength. This was developed by Samuel P. Langley, based on the Bouguer–Lambert–Beer law, and is now commonly used to derive the absolute calibration of an instrument. To be valid, the atmospheric transmission must remain constant during the experiment, which is carried out throughout a very clear day or half-day.

Longwave:

Relates to wavelengths longer than about 4 μm, corresponding to the infrared (or thermal) part of the spectrum, which can be of solar or terrestrial origin.

Luminous efficacy:

Characteristic illuminance (total luminous flux incident on a surface, per unit area) created by the sun (or an artificial lamp), relative to the power radiated by the sun (or the electric power used by the lamp). Its unit is the lumen per watt.

Mie scattering:

Refers to the theory developed by Gustav Mie to evaluate the electromagnetic extinction caused by particles whose size is larger than molecules, or even wavelength.

Monte Carlo code:

Radiative transfer computer program using the Monte Carlo method, which is a statistical-numerical method of solution of complex physical problems that relies on repeated random sampling. A large number of photons are virtually sent through the atmosphere and their disposition is recorded. This method can solve many complex problems, but is computationally intensive.

Optical depth:

A measure of transparency of an atmospheric layer, characterizing the fraction of radiation that is altered (scattered or absorbed) along its path through that layer.

Optical mass:

Idealized dimensionless optical pathlength of the solar photons from the limit of the atmosphere to a specific point at the surface, relative to the pathlength corresponding to the vertical of that same point. An optical mass of 1 corresponds to an overhead sun. An optical mass can be defined for each possible radiatively active constituent, and depends on the vertical profiles of its concentration and refractive index, combined with that of pressure and temperature. The optical mass corresponding to the scattering by air molecules (Rayleigh scattering) is the optical air mass, or simply air mass.

Photovoltaics:

Related to the property of photosensitive semiconductor materials (like silicon) to generate a photonic current (and thus electricity) when irradiated by a light source, such as solar radiation.

Precipitable water:

Depth of water inside a fictitious vertical atmospheric column, after all the water vapor originally contained in that column has condensed.

Radiance:

Radiometric quantity describing the amount of radiation that is emitted from a particular area (e.g., of the sky), within a given solid angle. Spectral radiance is usually measured in W m−2 nm−1 sr−1.

Radiative transfer:

Describes the energy transfer of electromagnetic radiation through absorbing, scattering, and emitting media.

Radiometry:

Scientific field that studies the measurement of electromagnetic radiation with instruments called radiometers.

Rayleigh scattering:

Extinction process for the elastic scattering of electromagnetic radiation by small particles, such as air molecules. The cloudless sky is normally blue as a result of Rayleigh scattering.

Shadowband:

Small arm used to block the sun in front of a radiometer. It can be a fixed band to measure diffuse radiation only, or a motorized rotating band to measure diffuse and global radiation alternatively.

Shortwave:

Relates to wavelengths shorter than about 4 μm, corresponding to the ultraviolet, visible, and near-infrared parts of the solar spectrum.

Solar spectral irradiance (SSI):

Radiative power received from the sun at 1 AU at normal incidence on a surface of unit area (1 m2) at a specific wavelength.

Spectroradiometry:

A part of radiometry dedicated to the measurement of radiation quantities in narrow spectral bands, using instruments called spectroradiometers or spectrometers.

Stratosphere:

Upper region of the terrestrial atmosphere extending from about 18 to 50 km.

Sunphotometry:

A part of radiometry dedicated to the measurement of narrow spectral bands of the solar spectrum with an instrument pointing at the sun called sunphotometer.

Total solar irradiance (TSI):

Radiative power received from the sun at 1 AU at normal incidence on a surface of unit area (1 m2).

Troposphere:

Lowest portion of the Earth’s atmosphere, below about 18 km altitude, in which most of atmospheric extinction occurs.

Bibliography

  1. Abbot CG (1966) Solar variation, a weather element. Proc Natl Acad Sci 56:1627–1634

    Article  CAS  Google Scholar 

  2. Hoyt DV (1979) The Smithsonian Astrophysical Observatory solar constant program. Rev Geophys Space Phys 17:427–458

    Article  Google Scholar 

  3. Burlov-Vasiljev KA, Gurtovenko EA, Matvejev YB (1995) New absolute measurements of the solar spectrum 310-685 nm. Sol Phys 157:51

    Article  Google Scholar 

  4. Burlov-Vasiljev KA, Matvejev YB, Lasiljeva IE (1998) New measurements of the solar disk-center spectral intensity in the near IR from 645 nm to 1070 nm. Sol Phys 177:25–40

    Article  Google Scholar 

  5. Harrison L, Kiedron P, Berndt J, Schlemmer J (2003) The solar spectrum 360 to 1050 nm from rotating shadowband spectroradiometer (RSS) measurements at the Southern Great Plains site. J Geophys Res 108(D14)4424. doi:10.1029/2001JD001311

    Google Scholar 

  6. Kurucz RL, Furenlid I, Brault J, Testerman L (1984) Solar flux atlas from 296 to 1300 nm. National Solar Observatory Atlas No.1, NOAO, Sunspot, NM

    Google Scholar 

  7. Neckel H, Labs D (1981) Improved data of solar spectral irradiance from 0.33 to 1.25μ. Sol Phys 74:231–249

    Article  CAS  Google Scholar 

  8. Fontenla J, Harder G (2005) Physical modeling of spectral irradiance variations. Mem Soc Astron Ital 76:826–833

    CAS  Google Scholar 

  9. Fontenla J, White OR, Fox PA, Avrett EH, Kurucz RL (1999) Calculation of solar irradiances I: synthesis of the solar spectrum. Astrophys J 518:480–499

    Article  CAS  Google Scholar 

  10. Kurucz RL (1995) The solar irradiance by computation. In: 17th annual conference transmission models. Report PL-TR-95-2060. Phillips Lab, Hanscom AFB, MA, pp 333–334

    Google Scholar 

  11. Shapiro AI, Schmutz W, Schoell M, Hanberreiter M, Rozanov E (2010) NLTE solar irradiance modeling with the COSI code. Astronomy Astrophys 517. doi:10.1051/0004-6361/200913987

    Google Scholar 

  12. Tobiska WK, Woods T, Eparvier F, Viereck R, Floyd L, Bouwer D, Rottman G, White OR (2000) The SOLAR2000 empirical solar irradiance model and forecast tool. J Atm Solar Terr Phys 62:1233–1250

    Article  Google Scholar 

  13. Tobiska WK, Bouwer SD (2006) New developments in SOLAR2000 for space research and operations. Adv Space Res 37:347–358

    Article  Google Scholar 

  14. ASTM (2000) Standard solar constant and air mass zero solar spectral irradiance tables, Standard E490-00. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  15. Gueymard CA (2004) The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol Energy 76:423–453

    Article  Google Scholar 

  16. Gueymard CA (2006) Reference solar spectra: their evolution, standardization and comparison to recent measurements. Adv Space Res 37:323–340

    Article  Google Scholar 

  17. Thuillier G, Floyd L, Woods TN, Cebula R, Hilsenrath E, Hersé M, Labs D (2004) Solar irradiance reference spectra. In: Pap JM, Fox J (eds) Solar variability and its effects on climate. American Geophysical Union, Washington, DC

    Google Scholar 

  18. Woods TN, Chamberlin PC, Harder JW, Hock RA, Snow M, Eparvier F, Fontenla J, McClintock WE, Richard E (2009) Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI). Geophys Res Lett 36:5. doi:10.1029/2008GL036373

    Google Scholar 

  19. ISO (2007) Space environment (natural and artificial) – process for determining solar irradiances, Standard 21348:2007. Geneva, Switzerland

    Google Scholar 

  20. Brueckner GE et al (1993) The solar ultraviolet spectral irradiance monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J Geophys Res 98D:10695–10711

    Article  Google Scholar 

  21. Rottman GJ, Woods TN, Sparn TP (1993) Solar stellar irradiance comparison experiment I: instrument design and operation. J Geophys Res 98:10667–10677

    Article  Google Scholar 

  22. Floyd LE, Reiser PA, Crane PC, Herring LC, Prinz DK, Brueckner GE (1998) Solar cycle 22 UV spectral irradiance variability: current measurements by SUSIM UARS. Sol Phys 177:79–87

    Article  CAS  Google Scholar 

  23. Cebula RP, Thuillier GO, VanHoosier ME, Hilsenrath E, Herse M, Brueckner GE, Simon PC (1996) Observations of the solar irradiance in the 200-350 nm interval during the ATLAS-1 mission: a comparison among three sets of measurements – SSBUV, SOLSPEC, and SUSIM. Geophys Res Lett 23:2289–2292

    Article  CAS  Google Scholar 

  24. Thuillier G, Hersé M, Labs D, Foujols T, Petermans W, Gillotay D, Simon PC, Mandel H (2003) The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Sol Phys 214:1–22

    Article  Google Scholar 

  25. Woods TN, Prinz DK, Rottman GJ, London J, Crane PC, Cebula RP, Hilsenrath E, Brueckner GE, Andrews MD, White OR, VanHoosier ME, Floyd LE, Herring LC, Knapp BG, Pankratz CK, Reiser PA (1996) Validation of the UARS solar ultraviolet irradiances: comparison with the ATLAS 1 and 2 measurements. J Geophys Res 101D:9541–9569

    Article  Google Scholar 

  26. Gueymard CA, Myers DR (2010) Solar resource for space and terrestrial applications. In: Fraas LM, Partain LD (eds) Solar cells and their applications, 2nd edn. Wiley, Hoboken

    Google Scholar 

  27. Anon (1976) U.S. Standard Atmosphere 1976, NOAA/NASA/USAF, Washington, DC

    Google Scholar 

  28. Kasten F, Young AT (1989) Revised optical air mass tables and approximation formula. Appl Opt 28:4735–4738

    Article  CAS  Google Scholar 

  29. Gueymard CA (2001) Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol Energy 71:325–346

    Article  CAS  Google Scholar 

  30. Gueymard CA, Kambezidis HD (2004) Solar spectral radiation. In: Muneer T (ed) Solar radiation and daylight models. Elsevier, Amsterdam, pp 221–301

    Chapter  Google Scholar 

  31. Reda I, Andreas A (2004) Solar position algorithm for solar radiation applications. Sol Energy 76:577–589

    Article  Google Scholar 

  32. Blanco-Muriel M, Alarcon-Padilla DC, Lopez-Moratalla T, Lara-Coira M (2001) Computing the solar vector. Sol Energy 70:431–441

    Article  Google Scholar 

  33. Grena R (2008) An algorithm for the computation of the solar position. Sol Energy 82:462–470

    Article  CAS  Google Scholar 

  34. Iqbal M (1983) An introduction to solar radiation. Academic, Toronto

    Google Scholar 

  35. McCluney WR (1994) Introduction to radiometry and photometry. Artech House, Boston

    Google Scholar 

  36. Shaw GE (2007) Genesis of sun photometry. J Appl Remote Sens 1:012503–012513

    Article  Google Scholar 

  37. Shaw GE (1983) Sun photometry. B Am Meteorol Soc 64:4–10

    Article  Google Scholar 

  38. Ross J, Sulev M (2000) Sources of errors in measurements of PAR. Agric For Meteorol 100:103–125

    Article  Google Scholar 

  39. Harrison L, Beauharnois M, Berndt J, Kiedron P, Michalsky J, Min Q (1999) The rotating shadowband spectroradiometer (RSS) at SGP. Geophys Res Lett 26:1715–1718

    Article  CAS  Google Scholar 

  40. Bohren CF, Clothiaux EE (2006) Fundamentals of atmospheric radiation: an introduction with 400 problems. Wiley, Weinheim

    Book  Google Scholar 

  41. Goody RM, Yung YL (1995) Atmospheric radiation: theoretical basis, 2nd edn. Oxford University Press, New York

    Google Scholar 

  42. Lenoble J (1985) Radiative transfer in scattering and absorbing atmospheres: standard computational procedures. A. Deepak Publ, Hampton

    Google Scholar 

  43. Lenoble J (1993) Atmospheric radiative transfer. A. Deepak Publ, Hampton

    Google Scholar 

  44. Liou KN (1992) Radiation and cloud processes in the atmosphere: theory, observation, and modeling. Oxford University Press, New York

    Google Scholar 

  45. Liou KN (2002) An introduction to atmospheric radiation, 2nd edn, vol 84. Academic, New York

    Google Scholar 

  46. Petty GW (2006) A first course in atmospheric radiation, 2nd edn. Sundog Publ, Madison

    Google Scholar 

  47. Thomas GE, Stamnes K (1999) Radiative transfer in the atmosphere and ocean. Cambridge University Press, Cambridge

    Book  Google Scholar 

  48. Wendisch M, Mayer B (2003) Vertical distribution of spectral solar irradiance in the cloudless sky: a case study. Geophys Res Lett 30:1183. doi:10.1029/2002GL016529

    Article  Google Scholar 

  49. Cahalan RF, Oreopoulos L, Marshak A, Evans KF, Davis AB, Pincus R, Yetzer KH, Mayer B, Davies R, Ackerman TP, Barker HW, Clothiaux EE, Ellingsom RG, Garay MJ, Kassianov E, Kinne S, Macke A, O'Hirock W, Partain PT, Prigarin SM, Rublev AN, Stephens GL, Szczap F, Takara EE, Varnai T, Wen G, Zhuravleva TB (2005) The I3RC – bringing together the most advanced radiative transfer tools for cloudy atmospheres. B Am Meteorol Soc 86:1275–1293

    Article  Google Scholar 

  50. Kylling A, Mayer B (2001) Ultraviolet radiation in partly snow covered terrain: observations and three-dimensional simulations. Geophys Res Lett 28:3365–3368

    Article  Google Scholar 

  51. Marshak A, Davis A (eds) (2005) 3D radiative transfer in cloudy atmospheres. Springer, Berlin

    Google Scholar 

  52. Mayer B (2009) Radiative transfer in the cloudy atmosphere. Eur Phys J Conf 1:75–99

    Google Scholar 

  53. Barker HW, Stephens GL, Partain PT, Bergman JW, Bonnel B, Campana K, Clothiaux EE, Clough SA, Cusack S, Delamere J, Edwards J, Evans KF, Fouquart Y, Freidenreich S, Galin V, Hou Y, Kato S, Li J, Mlawer E, Morcrette JJ, O'Hirok W, Raisanen P, Ramaswamy V, Ritter B, Rozanov E, Schlesinger M, Shibata K, Sporyshev P, Sun Z, Wendisch M, Wood N, Yang F (2003) Assessing 1D atmospheric solar radiative transfer models: interpretation and handling of unresolved clouds. J Clim 16:2676–2699

    Article  Google Scholar 

  54. Halthore RN, Crisp D, Schwartz SE, Anderson GP, Berk A, Bonnel B, Boucher O, Chang F-L, Chou M-D, Clothiaux EE, Dubuisson P, Fomin B, Fouquart Y, Freidenreich S, Gautier C, Kato S, Laszlo I, Li Z, Mather JH, Plana-Fattori A, Ramaswamy V, Ricchiazzi P, Shiren Y, Trishchenko A, Wiscombe W (2005) Intercomparison of shortwave radiative transfer codes and measurements. J Geophys Res 110D. doi:10.1029/2004JD005293

    Google Scholar 

  55. Kotchenova SY, Vermote E, Levy R, Lyapustin A (2008) Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. Appl Opt 47:2215–2226

    Article  Google Scholar 

  56. Oreopoulos L, Mlawer E (2010) The Continual Intercomparison of Radiation Codes (CIRC): assessing anew the quality of GCM radiation algorithms. B Am Meteorol Soc 91:305–310

    Article  Google Scholar 

  57. Bird RE (1984) A simple, solar spectral model for direct-normal and diffuse horizontal irradiance. Sol Energy 32:461–471

    Article  Google Scholar 

  58. Gueymard CA (2008) Prediction and validation of cloudless shortwave solar spectra incident on horizontal, tilted, or tracking surfaces. Sol Energy 82:260–271

    Article  Google Scholar 

  59. Tadros MTY, El-Metwally M, Hamed AB (2005) A comparative study on SPCTRAL2, SPCTR-1881 and SMARTS2 models using direct normal irradiance in different bands for Cairo and Aswan Egypt. J Atmos Sol Terr Phy 67:1343–1356

    Article  Google Scholar 

  60. Gueymard CA (2005) Interdisciplinary applications of a versatile spectral solar irradiance model: a review. Energy 30:1551–1576

    Article  Google Scholar 

  61. Chu SX, Liu LH (2009) Analysis of terrestrial solar radiation exergy. Sol Energy 83:1390–1404

    Article  Google Scholar 

  62. Guechi A, Chegaar M (2007) Effects of diffuse spectral illumination on microcrystalline solar cells. J Electron Devices 5:116–121

    Google Scholar 

  63. Kinsey GS, Pien P, Hebert P, Sherif RA (2009) Operating characteristics of multijunction solar cells. Sol Energ Mat Sol C 93:950–951

    Article  CAS  Google Scholar 

  64. Myers DR, Gueymard CA (2004) Description and availability of the SMARTS spectral model for photovoltaic applications. In: Organic photovoltaics V, conference proceedings, vol 5520. SPIE, Bellingham, WA, pp 56–67

    Google Scholar 

  65. Cucumo M, De Rosa A, Ferraro V, Kaliakatsos D, Marinelli V (2008) Correlations of global and diffuse solar luminous efficacy for all sky conditions and comparisons with experimental data of five localities. Renew Energy 33:2036–2047

    Article  Google Scholar 

  66. Lopez G, Gueymard CA (2007) Clear-sky solar luminous efficacy determination using artificial neural networks. Sol Energy 81:929–939

    Article  Google Scholar 

  67. Bartlett JS, Ciotti AM, Davis RF, Cullen JJ (1998) The spectral effects of clouds on solar irradiance. J Geophys Res 103C:31017–31031

    Google Scholar 

  68. Nann S, Riordan C (1991) Solar spectral irradiance under clear and cloudy skies: measurements and a semiempirical model. J Appl Meteorol 30:447–462

    Article  Google Scholar 

  69. Leckner B (1978) The spectral distribution of solar radiation at the Earth's surface – elements of a model. Sol Energy 20:143–150

    Article  Google Scholar 

  70. Ångström A (1929) On the atmospheric transmission of sun radiation and on dust in the air. Geografis Annal 2:156–166

    Article  Google Scholar 

  71. Mayer B, Kylling A (2005) The libRadtran software package for radiative transfer calculations: description and examples of use. Atmos Chem Phys 5:1855–1877

    Article  CAS  Google Scholar 

  72. Zdunkowski W, Trautmann T, Bott A (2007) Radiation in the atmosphere – a course in theoretical meteorology. Cambridge Universuty Press, Cambridge, UK

    Book  Google Scholar 

  73. Liou Y-A, Teng Y-T, Van Hove T, Liljegren JC (2001) Comparison of precipitable water observations in the near Tropics by GPS, microwave radiometer, and radiosondes. J Appl Meteorol 40:5–15

    Article  Google Scholar 

  74. Pacione R, Fionda E, Ferrara R, Lanotte R, Sciarretta C, Vespe F (2002) Comparison of atmospheric parameters derived from GPS VLBI ground based microwave radiometer Italy. Phys Chem Earth 27:309–316

    Article  Google Scholar 

  75. Schneider M, Romero PM, Hase F, Blumenstock T, Cuevas E, Ramos R (2010) Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92. Atmos Meas Tech 3:323–338

    Article  Google Scholar 

  76. Wang JR, Melfi SH, Racette P, Whitemen DN, Chang LA, Ferrare RA, Evans KD, Schmidlin FJ (1995) Simultaneous measurements of atmospheric water vapor with MIR, Raman lidar, and rawinsondes. J Appl Meteorol 34:1595–1607

    Article  Google Scholar 

  77. Randel DL, Vonder Haar TH, Rngerud MA, Stephens GL, Greenwald TJ, Combs CL (1996) A new global water vapor dataset. B Am Meteorol Soc 77:1233–1246

    Article  Google Scholar 

  78. Amenu GG, Kumar P (2005) NVAP and Reanalysis-2 global precipitable water products: intercomparison and variability studies. B Am Meteorol Soc 86:245–256

    Article  Google Scholar 

  79. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. B Am Meteorol Soc 82:247–268

    Article  Google Scholar 

  80. Morland J, Liniger MA, Kunz H, Balin I, Nyeki S, Mätzler C, Kämpfer N (2006) Comparison of GPS and ERA40 IWV in the Alpine region, including correction of GPS observations at Jungfraujoch (3584 m). J Geophys Res 111D. doi:10.1029/2005JD006043

    Google Scholar 

  81. Sudradjat A, Ferraro RR, Fiorino M (2005) A comparison of total precipitable water between reanalyses and NVAP. J Clim 18:1790–1807

    Article  Google Scholar 

  82. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET – a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  83. Kinne S, Schulz M, Textor C, Guibert S, Balkanski Y, Bauer SE, Berntsen T, Berglen TF, Boucher O, Chin M, Collins W, Dentener F, Diehl T, Easter R, Feichter J, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Herzog M, Horowitz L, Isaksen I, Iversen T, Kirkevag A, Kloseter S, Koch D, Krsitjansson JE, Krol M, Lauer A, Lamarque JF, Lesins G, Liu X, Lohmann U, Montanaro V, Myhre G, Penner JE, Pitari G, Reddy S, Seland O, Stier P, Takemura T, Tie X (2006) An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834

    Article  CAS  Google Scholar 

  84. Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O'Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104D:31333–31349

    Article  Google Scholar 

  85. Weller M, Leiterer U (1988) Experimental data on spectral aerosol optical thickness and its global distribution. Contr Atmos Phys 61:1–9

    Google Scholar 

  86. ASTM (1987) Standard tables for terrestrial direct normal solar spectral irradiance for air mass 1.5, Standard E891-87. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  87. ASTM (1987) Standard tables for terrestrial solar spectral irradiance at air mass 1.5 for a 37° tilted surface, Standard E892-87. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  88. ASTM (2003) Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  89. IEC (2008) Photovoltaic devices, Part 3: measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. International Electrotechnical Commission, Geneva, Switzerland

    Google Scholar 

  90. Gueymard CA, Myers D, Emery K (2002) Proposed reference irradiance spectra for solar energy systems testing. Sol Energy 73:443–467

    Article  Google Scholar 

  91. Myers DR, Emery K, Gueymard CA (2004) Revising and validating spectral irradiance reference standards for photovoltaic performance evaluation. J Sol Energ-T ASME 126:567–574

    Article  Google Scholar 

  92. ASTM (2003) Standard tables for reference solar ultraviolet spectral distributions: hemispherical on 37° tilted surface. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  93. ASTM (2008) Table for reference solar spectral distributions: direct and diffuse on 20° tilted and vertical surfaces. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian A. Gueymard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Gueymard, C.A. (2012). Solar Radiation Spectrum . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_445

Download citation

Publish with us

Policies and ethics