Skip to main content

New Polymers, Renewables as Raw Materials

  • Reference work entry
Book cover Encyclopedia of Sustainability Science and Technology
  • 268 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Composite materials:

Are engineered or naturally occurring materials made from two or more constituent materials with significantly different physical or chemical properties which remain separate and distinct at the microscopic scale.

Lignin:

Is a complex chemical compound most commonly derived from wood and an integral part of the secondary cell walls of plants and some algae.

Triglyceride:

Is an ester derived from glycerol and three fatty acids. It is the main constituent of vegetable oil and animal fats.

Bibliography

  1. Wool RP, Kusefoglu S, Zhao R, Palmese G, Khot S (2000) High Modulus Polymers and Composites from Plant Oils. U.S. Patent 6,121,398

    Google Scholar 

  2. Wool RP (1999) Chemtech 29:41

    Google Scholar 

  3. Liu K (1997) Soybeans: chemistry, technology, and utilization. Chapman and Hall, New York

    Book  Google Scholar 

  4. Gunstone F (1996) Fatty acid and lipid chemistry. Blackie Academic and Professional, New York

    Book  Google Scholar 

  5. Cunningham A, Yapp A (1971) U.S. Patent 3,827,993

    Google Scholar 

  6. Bussell GW (1971) U.S. Patent 3,855,163

    Google Scholar 

  7. Hodakowski LE, Osborn CL, Harris EB (1975) U.S. Patent 4,119,640

    Google Scholar 

  8. Trecker DJ, Borden GW, Smith OW (1976) U.S. Patent 3,979,270

    Google Scholar 

  9. Trecker DJ, Borden GW, Smith OW (1976) U.S. Patent 3,931,075

    Google Scholar 

  10. Salunkhe DK, Chavan JK, Adsule RN, Kadam SS (1992) World oilseeds: chemistry, technology, and utilization. Van Nostrand Reinhold, New York

    Google Scholar 

  11. Force CG, Starr FS (1988) U.S. Patent 4,740,367

    Google Scholar 

  12. Barrett LW, Sperling LH, Murphy CJ (1993) J Am Oil Chem Soc 70:523

    Article  CAS  Google Scholar 

  13. Qureshi S, Manson JA, Sperling LH, Murphy CJ (1983) In: Carraher CE, Sperling LH (eds) Polymer applications of renewable-resource materials. Plenum Press, New York

    Google Scholar 

  14. Devia N, Manson JA, Sperling LH, Conde A (1979) Polym Eng Sci 19:878

    Article  CAS  Google Scholar 

  15. Devia N, Manson JA, Sperling LH, Conde A (1979) Polym Eng Sci 19:869

    Article  CAS  Google Scholar 

  16. Devia N, Manson JA, Sperling LH, Conde A (1979) Macromolecules 12:360

    Article  CAS  Google Scholar 

  17. Sperling LH, Carraher CE, Qureshi SP et al (1991) In: Gebelein CG (ed) Polymers from biotechnology. Plenum Press, New York

    Google Scholar 

  18. Sperling LH, Manson JA, Linne MA (1984) J Polym Mater 1:51

    Google Scholar 

  19. Sperling LH, Manson JA (1983) J Am Oil Chem Soc 60:1887

    Article  CAS  Google Scholar 

  20. Fernandez AM, Murphy CJ, DeCosta MT et al (1983) In: Carraher CE, Sperling LH (eds) Polymer applications of renewable-resource materials. Plenum Press, New York

    Google Scholar 

  21. Sperling LH, Manson JA, Qureshi SA, Fernandez AM (1981) Ind Eng Chem 20:163

    CAS  Google Scholar 

  22. Yenwo GM, Manson JA, Pulido J et al (1977) J Appl Polym Sci 21:1531

    Article  CAS  Google Scholar 

  23. Frischinger I, Dirlikov S (1991) Polymer Comm 32:536

    CAS  Google Scholar 

  24. Frischinger I, Dirlikov S (1994) In: Sperling LH, Kempner D, Utracki L (eds) Interpenetrating polymer networks. Advances in chemistry series 239. American Chemical Society, Washington, DC, p 517

    Chapter  Google Scholar 

  25. Rosch J, Mulhaupt R (1993) Polymer Bull 31:679

    Article  Google Scholar 

  26. Meffert A, Kluth H (1989) Denmark Patent 4,886,893

    Google Scholar 

  27. Rangarajan B, Havey A, Grulke EA, Culnan PD (1995) J Am Oil Chem Soc 72:1161

    Article  CAS  Google Scholar 

  28. Zaher FA, El-Malla MH, El-Hefnawy MM (1989) J Am Oil Chem Soc 66:698

    Article  CAS  Google Scholar 

  29. Friedman A, Polovsky SB, Pavlichko JP, Moral LS (1996) U.S. Patent 5,576,027

    Google Scholar 

  30. Swern D, Billen GN, Findley TW, Scanlan JT (1945) J Am Oil Chem Soc 67:786

    Google Scholar 

  31. Sonntag NOV (1982) J Am Oil Chem Soc 59:795

    Article  Google Scholar 

  32. Solomon DH (1967) The chemistry of organic film formers. Wiley, New York

    Google Scholar 

  33. Can E (1999) M.S. Thesis, Bogazici University, Turkey

    Google Scholar 

  34. Bailey AE (1985) In: Swern D (ed) Bailey’s industrial oil and fat products. Wiley, New York

    Google Scholar 

  35. Hellsten M, Harwigsson I, Brink C (1999) U.S. Patent 5,911,236

    Google Scholar 

  36. Cain FW, Kuin AJ, Cynthia PA, Quinlan PT (1995) U.S. Patent 5,912,042

    Google Scholar 

  37. Eckwert K, Jeromin L, Meffert A, et al (1987) U.S. Patent 4,647,678

    Google Scholar 

  38. Khot SN (1998) M.S. Thesis, University of Delaware

    Google Scholar 

  39. Wypych J (1986) Polyvinyl chloride stabilization. Elsevier, Amsterdam

    Google Scholar 

  40. Sears JK, Darby JR (1982) The technology of plasticizers. Wiley, New York

    Google Scholar 

  41. Carlson KD, Chang SP (1985) J Am Oil Chem Soc 62:931

    Google Scholar 

  42. Raghavachar R, Letasi RJ, Kola PV et al (1999) J Am Oil Chem Soc 76:511

    Article  CAS  Google Scholar 

  43. Pashley RM, Senden TJ, Morris RA, et al (1991) U.S. Patent 5,360,880

    Google Scholar 

  44. Likavec WR, Bradley CR (1999) U.S. Patent 5,866,628

    Google Scholar 

  45. Bordon GW, Smith OW, Trecker DJ (1971) U.S. Patent 4,025,477

    Google Scholar 

  46. La Scala JJ, Wool RP (2002) J Am Oil Chem Soc 79:59

    Article  Google Scholar 

  47. Bunker SP (2000) M.S. Thesis, University of Delaware

    Google Scholar 

  48. Chu TJ, Niou DYJ (1989) Chin Inst Chem Eng 20:1

    CAS  Google Scholar 

  49. Betts AT (1975) U.S. Patent 3,867,354

    Google Scholar 

  50. Mitch EL, Kaplan SL (1975) In: Proceedings of 33 rd annual SPE technical conference, Atlanta

    Google Scholar 

  51. Can E, Kusefoglu S, Wool RP (2001) Rigid thermosetting liquid molding resins from renewable resources: I. Copolymers of soyoil monoglycerides with maleic anhydride. J Appl Polym Sci 81:69

    Google Scholar 

  52. Gardner HC, Cotter RJ (1981) European Patent 20,945

    Google Scholar 

  53. Thomas P, Mayer J (1971) U.S. Patent 3,784,586

    Google Scholar 

  54. Lee SH, Park TW, Lee SO (1999) Polymer (Korea) 23:493

    CAS  Google Scholar 

  55. ShioneH, Yamada J (1999) Japanese Patent 11,147,222

    Google Scholar 

  56. Hasegawa H (1999) Japanese Patent 11,240,014

    Google Scholar 

  57. Johnson LK, Sade WT (1993) J Coat Tech 65:19

    CAS  Google Scholar 

  58. Solomons TWG (1992) Organic chemistry. Wiley, New York

    Google Scholar 

  59. La Scala J, Wool RP Polymer. in preparation

    Google Scholar 

  60. Flory PJ (1975) Principles of polymer chemistry. Cornell University, Ithaca

    Google Scholar 

  61. Nielsen LE, Landel RF (1991) Mechanical properties of polymers and composites. Marcel Dekker, New York

    Google Scholar 

  62. Wool RP, Khot SN (2000) In: Proceedings of ACUN-2, Sydney

    Google Scholar 

  63. Can E, Kusefoglu S, Wool RP (2001) Rigid thermosetting liquid molding resins from renewable resources: (I) copolymers of soyoil monoglycerides with maleic anhydride. J Appl Polym Sci 81:69

    Article  CAS  Google Scholar 

  64. Khot SN, La Scala JJ, Can E et al (2001) J Appl Polym Sci 82:703

    Article  CAS  Google Scholar 

  65. Can E, Kusefoglu S, Wool RP (2002) Rigid thermosetting liquid molding resins from renewable resources. II. Copolymers of soybean oil monoglyceride maleates with neopentyl glycol and bisphenol A maleates. J Appl Polym Sci 83(5):972–980

    Google Scholar 

  66. Can E (2004) PhD Thesis, University of Delaware

    Google Scholar 

  67. Wool RP (2008) J Polym Sci Part B: Polym Phys 46:2765

    Article  CAS  Google Scholar 

  68. Wool RP, Campanella A (2009) J Polym Sci Part B: Polym Phys 47:2578

    Article  CAS  Google Scholar 

  69. Stanzione JF III, Strawhecker KE, Wool RP, doi:10.1016/j.jnoncrysol.2010.06.041

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Wool .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Wool, R.P. (2012). New Polymers, Renewables as Raw Materials . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_350

Download citation

Publish with us

Policies and ethics