Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Aerosol in Global Atmosphere

  • Colin O’DowdEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_322

Definition of the Subject

Atmospheric aerosol s are airborne liquid or solid particles, varying in size from nanometers to hundreds of microns. Atmospheric aerosol s are formed from both natural and anthropogenic sources and can have complex chemical speciation and shape. They are formed from mechanical breakup of a parent material, such as dust or sea spray (so-called primary aerosol formation ), or from gas-to-particle conversion processes, such as condensation of semivolatile organic compounds (VOCs) or chemical reactions in the aerosol phase such as oxidation of SO2 to SO4(so-called secondary aerosol formation ). These tiny airborne particles can form haze and cloud layers that influence the Earth’s climate: aerosols directly reflect incoming solar radiation back out to space, providing a direct radiative effect on climate, some of which act as cloud condensation nuclei in the cloud formation process where they determine cloud microphysical and radiative properties, ultimately...

This is a preview of subscription content, log in to check access.


  1. 1.
    Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York/Chichester, air pollution to climate, 1998Google Scholar
  2. 2.
    Jaenicke R (1998) Atmospheric aerosol size distribution. In: Harrison RM, van Grieken RE (eds) Atmospheric particles. Wiley, Chichester, UK/New YorkGoogle Scholar
  3. 3.
    Brasseur GP, Prinn RG, Pszenny AAP (eds) (2003) Tropospheric aerosols. Atmospheric chemistry in a changing world – an integration and synthesis of a decade of tropospheric chemistry research. Springer-Verlag, Berlin, Heidelberg. ISBN: 3-540-43050-4Google Scholar
  4. 4.
    Gillette DA (1979) Environmental factors affecting dust emission by wind erosion. In: Morales C (ed) Saharan Dust, SCOPE 14. Wiley, New York, pp 71–91Google Scholar
  5. 5.
    Bishop JKB, Davis RE, Sherman JT (25 October 2002) Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science 298(5594):817–821CrossRefGoogle Scholar
  6. 6.
    Elbert W, Taylor PE, Andreae MO, Pöschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569–4588CrossRefGoogle Scholar
  7. 7.
    Després VR et al (2007) Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences 4:1127–1141CrossRefGoogle Scholar
  8. 8.
    Möhler O, DeMott PJ, Vali G, Levin Z (2007) Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences 4:1059–1071CrossRefGoogle Scholar
  9. 9.
    Lewis ER, Schwartz SE (2004) Sea salt aerosol production: mechanisms, methods, measurements and models – a critical review, vol 152, Geophysical monograph. American Geophysical Union, Washington, DCCrossRefGoogle Scholar
  10. 10.
    Monahan EC, Spiel DE, Davidson KL (1986) A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan EC, MacNiocaill G (eds) Oceanic whitecaps and their role in air-sea exchange processes. Reidel, Dordrecht, pp 167–174CrossRefGoogle Scholar
  11. 11.
    Blanchard DC (1963) The electrification of the atmosphere by particles from bubbles in the sea. Progr Oceanogr 1:71–202CrossRefGoogle Scholar
  12. 12.
    O’Dowd CD, Lowe JA, Smith MH (1997) Marine aerosol, sea-salt, and the marine sulphur cycle: a short review. Atmos Environ 31:73–80CrossRefGoogle Scholar
  13. 13.
    O’Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Yoon YJ, Putaud J-P (2004) Biogenically-driven organic contribution to marine aerosol. Nature. doi:10.1038/nature02959Google Scholar
  14. 14.
    IEA (1998a) Energy statistics of OECD countries. International Energy Agency, ParisGoogle Scholar
  15. 15.
    IEA (1998b) Energy statistics of non-OECD countries. International Energy Agency, ParisGoogle Scholar
  16. 16.
    Watson JG et al (1994) Differences in the carbon composition of source profiles for diesel-powered and gasoline-powered vehicles. Atmos Environ 28(15):2493–2505CrossRefGoogle Scholar
  17. 17.
    O’Dowd CD, Aalto P, Hämeri K, Kulmala M, Hoffmann T (2002) Atmospheric particles from organic Vapours. Nature 416:497–498CrossRefGoogle Scholar
  18. 18.
    Oxtoby DW, Kashchiev D (1994) A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation. J Chem Phys 100(10):7665–7767CrossRefGoogle Scholar
  19. 19.
    Riipinen I et al (2007) Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä. Atmos Chem Phys 7(8):1899–1914CrossRefGoogle Scholar
  20. 20.
    Weber RJ et al (1997) Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. J Geophys Res-Atmos 102(D4):4375–4385CrossRefGoogle Scholar
  21. 21.
    McMurry PH, Friedlander SK (1979) New particle formation in the presence of an aerosol. Atmos Environ 13(12):1635–1651CrossRefGoogle Scholar
  22. 22.
    Kulmala M et al (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35(2):143–176CrossRefGoogle Scholar
  23. 23.
    Kulmala M, Kerminen V-M, Anttila T, Laaksonen A, O’Dowd CD (2004) Organic aerosol formation via sulphate cluster activation. J Geophys Res 109:D04205. doi:10.1029/2003JD003961CrossRefGoogle Scholar
  24. 24.
    Bonn B, Kulmala M, Riipinen I, Sihto SL, Ruuskanen TM (2008) How biogenic terpenes govern the correlation between sulfuric acid concentrations and new particle formation. J Geophys Res-Atmos 113:D12209. doi:10.1029/2007JD009327CrossRefGoogle Scholar
  25. 25.
    Metzger A, Verheggen B, Dommena J, Duplissya J, Prevota ASH, Weingartner E, Riipinen I, Kulmala M, Spracklen DV, Carslaw KS, Baltensperger U (2010) Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proc Natl Acad Sci USA. doi:/10.1073/pnas.0911330107Google Scholar
  26. 26.
    O’Dowd CD, Jimenez JL, Bahreini R, Flagan RC, Seinfeld JH, Pirjola L, Kulmala M, Jennings SG, Hoffmann T (2002) Marine particle formation from biogenic iodine emissions. Nature 417:632–636CrossRefGoogle Scholar
  27. 27.
    O’Dowd CD, Geever M, Hill MK, Jennings SG, Smith MH (1998) New particle formation: spatial scales and nucleation rates in the coastal environment. Geophys Res Lett 25:1661–1664CrossRefGoogle Scholar
  28. 28.
    O’Dowd CD (2001) Biogenic coastal aerosol production and its influence on aerosol radiative properties. J Geophys Res 106:1545–1550CrossRefGoogle Scholar
  29. 29.
    Hegg DA, Hobbs PV (1982) Measurement of sulphate production in natural clouds. Atmos Environ 16:2663–2668CrossRefGoogle Scholar
  30. 30.
    O‘Dowd CD, Lowe JA, Clegg N, Clegg SL, Smith MH (2000) Modelling heterogeneous sulphate production in maritime stratiform clouds. J Geophys Res 105:7143–7160CrossRefGoogle Scholar
  31. 31.
    Henze DK, Seinfeld JH (2007) Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways. Atmos Chem Phys Discuss 7:14569–14601CrossRefGoogle Scholar
  32. 32.
    Szidat S, Jenk TM, Synal HA, Kalberer M, Wacker L, Hajdas I, Kasper-Giebl A, Baltensperger U (2006) Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J Geophys Res 111:D07206. doi:10.1029/2005JD006590CrossRefGoogle Scholar
  33. 33.
    Kroll JH, Ng NL, Murphy SM, Flagan RC, Seinfeld JH (2005) Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys Res Lett 32:L18808. doi:10.1029/2005GL023637CrossRefGoogle Scholar
  34. 34.
    Decesari S, Mircea M, Cavalli F, Fuzzi S, Tagliavini E, Facchini MC (2007) Source attribution of water-soluble organic aerosol by nuclear magnetic resonance spectroscopy. Environ Sci Technol 41:2479–2484. doi:10.1021/es061711lCrossRefGoogle Scholar
  35. 35.
    Claeys M et al (2004a) Formation of secondary organic aerosol through photooxidation of isoprene. Science 303:1173–1176CrossRefGoogle Scholar
  36. 36.
    Claeys M, Wang W, Ion AC, Kourtchev I, Gelencsér A, Maenhaut W (2004b) Formation of secondary organic aerosols from isoprene and gas-phase oxidation products through reaction with hydrogen peroxide. Atmos Environ 38:4093–4098CrossRefGoogle Scholar
  37. 37.
    Limbeck A, Kulmala M, Puxbaum H (2003) Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles. Geophys Res Lett 30(19):1996. doi:10.1029/2003GL017738CrossRefGoogle Scholar
  38. 38.
    Jang M, Czoschke NM, Lee S, Kamens RM (2002) Heterogeneous atmospheric aerosol production by acid-catalyzed particle phase reactions. Science 298:814CrossRefGoogle Scholar
  39. 39.
    Kalberer M et al (2004) Identification of polymers as major components of atmospheric organic aerosols. Science 303:1659–1662CrossRefGoogle Scholar
  40. 40.
    Ervens B, Feingold G, Frost GJ, Kreidenweis SM (2004) A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. J Geophys Res 109:D15205. doi:10.1029/2003JD004387, 2004CrossRefGoogle Scholar
  41. 41.
    Jimenez JL et al (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525. doi:10.1126/science.1180353CrossRefGoogle Scholar
  42. 42.
    Andreae, MO, Rosenfeld D (2008) Aerosol–cloud–precipitation interactions. Part 1, The nature and sources of cloud-active aerosols. Earth-Sci Rev, doi:10.1016/j.earscirev.2008.03.001Google Scholar
  43. 43.
    Andreae MO (1995) Climatic effects of changing atmospheric aerosol levels. In: Henderson-Sellers A (ed) World survey of climatology, vol 16, Future climates of the world. Elsevier, Amsterdam, pp 341–392Google Scholar
  44. 44.
    Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966CrossRefGoogle Scholar
  45. 45.
    Bauer SE et al (2007) Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone. Atmos Chem Phys 7:5043–5059CrossRefGoogle Scholar
  46. 46.
    Bond TC et al (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109(D14):D14203. doi:10.1029/2003JD003697CrossRefGoogle Scholar
  47. 47.
    Guelle W, Schulz M, Balkanski Y, Dentener F (2001) Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol. J Geophys Res 106(D21):27,509–27,524CrossRefGoogle Scholar
  48. 48.
    Gong SL, Barrie LA, Lazare M (2002) Canadian Aerosol Module (CAM): a size segregated simulation of atmospheric aerosol processes for climate and air quality models – 2. Global sea-salt aerosol and its budgets. J Geophys Res 107(D24):4779. doi:10.1029/2001JD002004CrossRefGoogle Scholar
  49. 49.
    Ito A, Penner JE (2005) Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Glob Biogeochem Cycles 19:GB2028. doi:10.1029/2004GB002374CrossRefGoogle Scholar
  50. 50.
    Junker C, Liousse C (2006) A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos Chem Phys Discuss 4:4897–4927CrossRefGoogle Scholar
  51. 51.
    Luo C, Mahowald NM, del Corral J (2003) Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J Geophys Res 108(D15):4447. doi:10.1029/2003JD003483CrossRefGoogle Scholar
  52. 52.
    Liousse C et al (2004) Deriving global quantitative estimates for spatial and temporal distributions of biomass burning emissions. In: Granier C, Artaxo P, Reeves CE (eds) Emissions of atmospheric trace compounds. Kluwer, Dordrecht, pp 71–113CrossRefGoogle Scholar
  53. 53.
    Penner JE et al (2001) Aerosols, their direct and indirect effects. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 289–348Google Scholar
  54. 54.
    Stier P et al (2005) The aerosol–climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156CrossRefGoogle Scholar
  55. 55.
    Zender CS, Miller RL, Tegen I (2004) Quantifying mineral dust mass budgets: terminology, constraints, and current estimates. Eos Trans AGU 85(48):509–512CrossRefGoogle Scholar
  56. 56.
    Vignati E, Facchini MC, Rinaldi M, Scannell C, Ceburnis D, Sciare J, Kanakidou M, Myriokefalitakis S, Dentener F, O’Dowd CD (2010) Global scale emission and distribution of sea spray aerosol: sea-salt and organic enrichment. Atmos Environ 44:670–677CrossRefGoogle Scholar
  57. 57.
    Kinne S, Schulz M, Textor C, Guibert S, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Collins W, Dentener F, Diehl T, Easter R, Feichter J, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Herzog M, Horowitz L, Isaksen I, Iversen T, Koch D, Krol M, Lauer A, Lamarque JF, Lesins G, Liu X, Lohmann U, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland O, Stier P, Takemura T, Tie X (2006) An AeroCom initial assessment – optical properties in aerosol component modules of global models, /ACP, 6,/ 1-22Google Scholar
  58. 58.
    Dall’Osto M, Ceburnis D, Martucci G, Bialek J, Dupuy R, Jennings SG, Berresheim H, Wenger JC, Healy RM, Facchini MC, Rinaldi M, Giulianelli L, Finessi E, Worsnop D, Ehn M, Mikkilä J, Kulmala M, Sodeau J, O’Dowd CD (2010) Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview. Atmos Chem Phys 10:8413–8435. doi:10.5194/acp-10-8413-2010CrossRefGoogle Scholar
  59. 59.
    Lauer A, Hendricks J (2006) Simulating aerosol microphysics with the ECHAM/MADE GCM – Part II: results from a first multiannual integration. Atmos Chem Phys 6:5495–5513CrossRefGoogle Scholar
  60. 60.
    Deshler T (2008) A review of global stratospheric aerosol: measurements, importance, life cycle, and local stratospheric aerosol. Atmos Res 90:223–232. doi:10.1016/j.atmosres.2008.03.016CrossRefGoogle Scholar
  61. 61.
    Rosen JM (1971) The boiling point of stratospheric aerosols. J Appl Meteorol 10:1044–1046CrossRefGoogle Scholar
  62. 62.
    Carslaw KS, Luo BP, Clegg SL, Peter Th, Brimblecombe P, Crutzen PJ (1994) Stratospheric aerosol growth and HNO3 and water uptake by liquid particles. Geophys Res Lett 21:2479–2482CrossRefGoogle Scholar
  63. 63.
    Hanson DR, Mauersberger K (1988) Laboratory studies of the nitric acid trihydrate: implication for the south polar stratosphere. Geophys Res Lett 15:855–858CrossRefGoogle Scholar
  64. 64.
    Deshler T, Larsen N, Weisser C, Schreiner J, Mauersberger K, Cairo F, Adriani A, Di Donfrancesco G, Ovarlez J, Ovarlez H, Blum U, Fricke KH, Dörnbrack A (2003b) Large nitric acid particles at the top of an Arctic stratospheric cloud. J Geophys Res 108(D16):4517. doi:10.1029/2003JD003479CrossRefGoogle Scholar
  65. 65.
    Fahey DW et al (2001) The detection of large HNO3-containing particles in the winter Arctic stratosphere. Science 291:1026–1031CrossRefGoogle Scholar
  66. 66.
    Larsen N, Knudsen BM, Svendsen SH, Deshler T, Rosen JM, Kivi R, Weisser C, Schreiner J, Mauersberger K, Cairo F, Ovarlez J, Oelhaf H, Schmidt A (2004) Formation of solid particles in synoptic-scale Arctic PSCs in early winter 2002/2003. Atmos Chem Phys 4:2001–2013CrossRefGoogle Scholar
  67. 67.
    Kőhler H (1936) The nucleus in and the growth of hygroscopic droplets. Trans Farad Soc 32:1152–1161CrossRefGoogle Scholar
  68. 68.
    Chylek P, Wong JGD (1998) Erroneous use of the modified K¨ohler equation in cloud and aerosol physics application. J Atmos Sci 55:1473–1477CrossRefGoogle Scholar
  69. 69.
    Pruppacher H, Klett J (1997) Microphysics of clouds and precipitation, atmospheric and oceanographic sciences library; v. 18, Kluwer, Dordrecht; London, includes bibliographical references and index Previous ed.: 1978 “With an introduction to cloud chemistry and cloud electricity”Google Scholar
  70. 70.
    Rogers RR, Yau MK (1989) A short course in cloud physics, vol. 113, International Series in Natural Philosophy, 3rd edn. Butterworth- Heinemann, Woburn, MAGoogle Scholar
  71. 71.
    Twomey S (1977) The influence of pollution on shortwave albedo of clouds. J Atmos Sci 34:1149–1152CrossRefGoogle Scholar
  72. 72.
    Twomey S (1977) Atmospheric aerosols. Elsevier, New YorkGoogle Scholar
  73. 73.
    McFiggans G, Artaxo P, Baltensperger U, Coe H, Facchini MC, Feingold G, Fuzzi S, Gysel M, Laaksonen A, Lohman U, Mentel TF, Murphy DM, O’Dowd CD, Snider JR, Weingartner E (2006) The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos Chem Phys 6:2593–2649CrossRefGoogle Scholar
  74. 74.
    Vali G (1996) Ice nucleation – a review. In: Kulmula M, Wagner P (eds) Nucleation and atmospheric aerosols. Pergamon, Oxford, pp 271–279Google Scholar
  75. 75.
    Bohren CF, Huffman D (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  76. 76.
    Schulz M, Textor C, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Dentener F, Guibert S, Isaksen ISA, Iversen T, Koch D, Kirkevåg A, Liu X, Montanaro V, Myhre G, Penner JE, Pitari G, Reddy S, Seland Ø, Stier P, Takemura T (2006) Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos Chem Phys 6:5225–5246CrossRefGoogle Scholar
  77. 77.
    Bellouin N, Jones A, Haywood J, Christopher SA (2008) Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre Climate Model. J Geophys Res 113(D10):D10205CrossRefGoogle Scholar
  78. 78.
    Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  79. 79.
    Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864CrossRefGoogle Scholar
  80. 80.
    Jacobson MZ (2002) Control of fossil fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Resh 107. doi:10.1029/2001JD001376Google Scholar
  81. 81.
    Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2252CrossRefGoogle Scholar
  82. 82.
    Penner JE, Zhang SY, Chuang CC (2003) Soot and smoke aerosols may not warm climate. J Geophys Res 108(21):4657. doi:10.1029/2003JD003409CrossRefGoogle Scholar
  83. 83.
    Lohmann U (2002) Possible aerosol effects on ice clouds via contact nucleation. J Atmos Sci 59:647–656CrossRefGoogle Scholar
  84. 84.
    Girard E, Blanchet J-P, Dubois Y (2004) Effects of arctic sulphuric acid aerosols on wintertime low-level atmospheric ice crystals, humidity and temperature at Alert, Nunavut. Atmos Res 73:131–148CrossRefGoogle Scholar
  85. 85.
    Rosenfeld D, Woodley WL (2000) Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature 405:440–442CrossRefGoogle Scholar
  86. 86.
    Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar
  87. 87.
    Rosenfeld D, Kaufman YJ, Koren I (2006) Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols. Atmos Chem Phys 6:2503–2513CrossRefGoogle Scholar
  88. 88.
    Rosenfeld D (2006) Aerosol–cloud interactions control of earth radiation and latent heat release budgets. Space Sci Rev 125:149–157CrossRefGoogle Scholar
  89. 89.
    Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 231. doi:10.1126/science.1160606Google Scholar
  90. 90.
    Liepert BG (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys Res Lett 29. doi:10.1029/2002GL014910Google Scholar
  91. 91.
    Wild M, Ohmura A, Gilgen H, Rosenfeld D (2004) On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle. Geophys Res Lett 31:L11201. doi:10.1029/2003GL019188CrossRefGoogle Scholar
  92. 92.
    Wild M (2009) Global dimming and brightening: a review. J Geophys Res 114:D00D16. doi:10.1029/2008JD011470CrossRefGoogle Scholar
  93. 93.
    Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation. Agric Forest Meteorol 107:255–278CrossRefGoogle Scholar
  94. 94.
    Norris JR, Wild M (2007) Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming” and solar “brightening”. J Geophys Res 112:D08214. doi:10.1029/2006JD007794CrossRefGoogle Scholar
  95. 95.
    Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in surface solar radiation. Science 308:847–850CrossRefGoogle Scholar
  96. 96.
    Philipona R, Behrens K, Ruckstuhl C (2009) How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys Res Lett 36:L02806. doi:10.1029/2008GL036350CrossRefGoogle Scholar
  97. 97.
    EEA (2007) Air pollution in Europe 1990–2004. EEA Report No 2/2007. European Environment Agency, CopenhagenGoogle Scholar
  98. 98.
    Ming Y, Ramaswamy V (2009) Nonlinear climate and hydrological responses to aerosol effects. J Clim 22:1329–1339CrossRefGoogle Scholar
  99. 99.
    Raes F, Seinfeld JH (2009) New directions: climate change and air pollution abatement: a bumpy road. Atmos Environ. doi:10.1016/j.atmosenv.2009.06.001Google Scholar
  100. 100.
    IPCC (2007) The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Physics & Centre for Climate and Air Pollution StudiesRyan Institute, National University of Ireland GalwayGalwayIreland