Skip to main content

Biomass Energy Heat Provision in Modern Large-Scale Systems

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

Definition of the Subject

Combustion of solid biomass is the oldest and most mature technology for the production of heat and the main source for the provision of renewable heat today. The applications of biomass combustion comprise a wide range from domestic combustion units with installed capacities of a couple of kW to district heating plants in the MW range and industrial combined heat and power units up to a nominal boiler capacity of 590 MWth [1].

Biomass is the most important renewable energy source in the European Union. In the field of energetic utilization of solid biomass, combustion is the most advanced and market-proven application. Consequently, the energetic use of solid biomass is primarily based on biomass combustion at presence. Biomass combustion technologies cover fixed-bed, fluidized bed, and pulverized fuel combustion systems. They are currently available for different types of biofuels covering a wide range of plant capacities....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Nickull S (2002) Worlds largest biomass co-generation plant opens in Finland. Co-generation & On-Site Power Production 3(3), May–June 2002

    Google Scholar 

  2. Obernberger I, Hammmerschmiedt A (1999) Dezentrale Biomasse-Kraft-Wärme-Kopplungstechnologien Potential, Einsatzgebiete, technische und wirtschaftliche Bewertung. Schriftenreihe “Thermische Biomassenutzung,” Band 4. dbv-Verlag der Technischen Universität Graz, Graz, Austria. ISBN3-7041-0261-X

    Google Scholar 

  3. Furtner K, Haneder H (2008) Biomasse – Heizungserhebung 2007. NÖ Landes-Landwirt¬schaftskammer, Abteilung Betriebswirt¬schaft und Technik (Hrsg.), St. Pölten, Österreich

    Google Scholar 

  4. Kopetz H et al (2008) 34 Prozent Erneuerbare machbar. Broschüre, Österreichischer Biomasse-Verband (Hrsg.), Wien, Österreich

    Google Scholar 

  5. Obernberger I, Thek G (2009) Herstellung und energetische Nutzung von Pellets – Produktions¬prozess, Eigenschaften, Feuerungs¬technik, Ökologie und Wirtschaftlichkeit. Schriftenreihe “Thermische Biomassenutzung” des Institutes für Partikel- und Prozesstechnik, Technische Universität Graz, Band 5, Graz, Österreich. ISBN 978-3-9501980-5-8

    Google Scholar 

  6. Obernberger I, Thek G (2010) The pellet handbook – the production and thermal utilization of biomass pellets. Earthscan, London

    Google Scholar 

  7. Herynkova H (2007) The perspectives of the European heating market. In: Proceedings of the European pellets conference 2007, O.Ö. Energiesparverband, Linz

    Google Scholar 

  8. Aebiom (2007) European biomass statistics 2007. European Biomass Association, Belgium

    Google Scholar 

  9. Nussbaumer T (2002) Combustion and co-combustion of biomass. In: Proceedings of the 12th European biomass conference, vol I, pp 31–37. ISBN 88-900442-5-X

    Google Scholar 

  10. Iea Bioenergy Task 32 (2002) Handbook of biomass combustion and co-firing. van Loo S, Koopejan J (ed) pp 171–213, ISBN 9036517737

    Google Scholar 

  11. Zhang L, Ninomiya Y (2007) Transformation of phosphorus during combustion of coal and sewage sludge and its contributions to PM10. Proc Combust Institute 31:2847–2854

    Article  CAS  Google Scholar 

  12. Obernberger I (1997) Nutzung fester Biomasse in Verbrennungsanlagen unter besonderer Berücksichtigung des Verhaltens aschebildender Elemente. Schriftenreihe “Thermische Biomassenutzung,” Band 1, dbv-Verlag der Technischen Universität Graz, Graz, Österreich, ISBN 3-7041-0241-5

    Google Scholar 

  13. Obernberger I (2010) The present state and future development of industrial biomass combustion for heat and power generation (keynote lecture). In: Proceedings of the ASME-AIT-UIT 2010 conference on thermal and environmental issues in energy systems, May 2010, Sorento, Italy, vol I. Editione ETS, Pisa, pp 9–25. ISBN 978-884672659-9

    Google Scholar 

  14. Hansen L, Frandsen F, dam-Johansen K, Soerensen S (1999) Quantification of fusion in ashes from solid fuel combustion. Thermochim Acta 326(1999):105–117

    Article  CAS  Google Scholar 

  15. Schmidt A, Zschetzsche A, Hantsch-Linhart W (1994) Analysen von biogenen Brennstoffen. Final report, Bundesministerium für Wissenschaft, Forschung und Kunst, Vienna, Austria

    Google Scholar 

  16. Marutzky R, Seeger K (1999) Energie aus Holz und anderer Biomasse. DRW-Verlag Weinbrenner, Leinfelden-Echtlingen, Germany, ISBN 3-87181-347-8

    Google Scholar 

  17. Mawera (1996) Company brochure, MAWERA Holzfeuerungsanlagen GmbH & CoKG, Hard/Bodensee, Austria

    Google Scholar 

  18. Leckner B, Karlsson M (1993) Gaseous emissions from circulating fluidised bed combustion of wood. Biomass Bioenerg 4(5):379–389

    Article  CAS  Google Scholar 

  19. Westermark M (1994) Termisk kadmiumrening av träbränsleaskor. report. Vattenvall Utveckling AB, Vällingby, Sweden

    Google Scholar 

  20. Nussbaumer T (1999) Stromerzeugung aus biogenen Brennstoffen. Brennstoff Wärme Kraft 51(7/8):51–55

    CAS  Google Scholar 

  21. Nussbaumer T, Neuenschwander P, Hasler P, Jenni A, Bühler R (1998) Technical and economic assessment of the technologies for the conversion of wood to heat, electricity and synthetic fuels. In: Proceedings of the 10th European Bioenergy Conference, June 1998, Würzburg, Germany. C.A.R.M.E.N., Rimpar, pp 1142–1145

    Google Scholar 

  22. Dietler R (1994) Wärme-Kraft-Kopplung mittels Dampfprozess bei Holzfeuerungen. In: Proceedings of the 3 rd Holzenergie-Symposium, October 21, 1994, ETH Zürich, Bundesamt für Energie, Bern, Switzerland, pp 251–274

    Google Scholar 

  23. Eder F (1997) Einsatz und Marktchancen von Stirling- und Heissgasmotoren. Brennstoff Wärme Kraft 49(1/2):42–45

    Google Scholar 

  24. Carlsen H (1999) Status and prospects of small-scale power production based on Stirling engines – Danish experiences. In: Proceedings of power production from biomass III, Espoo, 14–15 September, 1998. VTT, Espoo, pp 249–264

    Google Scholar 

  25. KKK-Kühnle, Kopp and Kausch AG (1998) Company brochure. Kopp & Kausch AG, Frankenthal/Pfalz, Germany

    Google Scholar 

  26. Bini R, Manciana E (1996) Organic Rankine cycle turbogenerators for combined heat and power production from biomass. In: Proceedings of the 3 rd Munich discussion meeting 1996. ZAE Bayern, Munich

    Google Scholar 

  27. Turboden SRL (1998) Company brochure. Brescia, Italien

    Google Scholar 

  28. Scheidegger K, Gaia M, Bini R, Bertuzzi P (2000) Small scale biomass powered CHP plants featuring thermal oil boiler and organic Rankin cycle turbogenerators. In: Proceeding of the 1st World conference and exhibitions on biomass for energy and industry, June 2000, Sevilla

    Google Scholar 

  29. Obernberger I, Thonhofer P, Reisenhofer E (2002) Description and evaluation of the new 1,000 kWel Organic Rankine Cycle process integrated in the biomass CHP plant in Lienz, Austria. In: Euroheat & Power, vol 10/2002, pp 18–25

    Google Scholar 

  30. Spitzer J, Podesser E, Jungmeier G (1997) Wärme-Kraft-Kopplung (Stirlingmotor, Dampfmotor, ORC-Prozesse). Thermische Biomassenutzung – Technik und Realisierung. VDI report 1319, VDI Verlag GmbH, Düsseldorf, Germany

    Google Scholar 

  31. Carlsen H, Bovin J (2000) Biofuel stirling engines for CHP. In: Proceedings of the 1st World conference on biomass for energy and industry, Sevilla, June 2000, vol I. James & James, London, pp 933–936. ISBN 1-902916-15-8

    Google Scholar 

  32. Steweag (1997) Forschungsprojekt TINA Thermodynamisch Innovative Nichtnukleare Anlage. Report, Steweag, Graz, Austria

    Google Scholar 

  33. de Ruyck J, Allard G, Maniatis K (1996) An externally fired evaporative gas turbine cycle for small scale biomass gasification. In: Proceedings of developments in thermochemical biomass conversion, Banff, Canada, May 1996, vol 2. Blackie Academic and Professional, London. ISBN 0-7514-0350-4

    Google Scholar 

  34. Thek G, Brunner T, Obernberger I (2010) Externally with biomass and internally with natural gas fired micro gas turbine – system, furnace and high temperature heat exchanger design as well as performance data from first test runs. In: Proceedings of the 18th European biomass conference and exhibition, Lyon, May 2010. ETA-Florence Renewable Energies, Lyon, pp 1891–1899. ISBN 978-88-89407-56-5

    Google Scholar 

  35. Riccio G, Spadi A, Chiaramonti D, Martelli F, Thek G, Brunner T, Obernberger I (2011) Development and test results of an externally biomass-fired micro gas turbine CHP plant. In: Proceedings of the central European biomass conference 2011, Graz, January 2011. Austrian Biomass Association, Vienna

    Google Scholar 

  36. Riccio G, Chiaramonti D (2009) Design and simulation of a small polygeneration plant cofiring biomass and natural gas in a dual combustion micro gas turbine (BIO_MGT). Biomass and bioenergy 33:1520–1531, ISSN 0961-9534

    Article  CAS  Google Scholar 

  37. Hammerschmid A, Obernberger I (2000) Biomasse-Kraft-Wärme-Kopplungen auf Basis des ORC-Prozesses am Beispiel des realisierten EU-THERMIE-Projektes in Admont (Österreich). In: Tagungsband zum 9. Symposium “Festbrennstoffe und umweltfreundliche Energietechnik,” Kloster Banz, Deutschland. OTTI Energie-Kolleg (Hrsg.), Regensburg, Deutschland, pp 48–58. ISBN 3-934681-09-3

    Google Scholar 

  38. Brunner T, Obernberger I (1996) New technologies for NOx reduction and ash utilization in biomass combustion plants – JOULE THERMIE 95 demonstration project. In: Proceedings of the 9th European bioenergy conference, vol 2. Elsevier, Oxford. ISBN 0 08 0428 495

    Google Scholar 

  39. Nussbaumer T (1996) Primary and secondary measures for the reduction of nitric oxide emissions from biomass combustion. In: Proceedings of the international conference “Developments in thermochemical biomass conversion,”, Banff, May 1996, vol 2. Blackie Academic and Professional, London. ISBN 0 7514 0350 4

    Google Scholar 

  40. de Nevers N (1995) Air pollution control engineering. McGraw-Hill, New York

    Google Scholar 

  41. Brunner T (2006) Aerosols and coarse fly ashes in fixed-bed biomass combustion. PhD thesis, book series “Thermal Biomass Utilization,” vol 6. Graz University of Technology, Styria. ISBN 3-9501980-3-2

    Google Scholar 

  42. Beck J, Brandenstein J, Unterberger S, Hein KRG (2004) Effects of sewage sludge and meat and bone meal Co-combustion on SCR catalysts. Appl Catalysis B 49:15–25

    Article  CAS  Google Scholar 

  43. Jöller M, Brunner T, Obernberger I (2005) Modelling of aerosol formation. In: Proceedings of the international seminar “Aerosols in Biomass Combustion,” Graz, March 2005. Book series "Thermal Biomass Utilization," vol 6. Graz, Austria, pp 79–106. ISBN 3-9501980-2-4

    Google Scholar 

  44. Cheremisinoff PN (1993) Air pollution control and design for industry. Marcel Dekker, New York

    Google Scholar 

  45. Backman R, Skrifvars B, Yrjas P (2005) The influence of aerosol particles on the melting behaviour of ash deposits in biomass fired boilers. In: Proceedings of the international seminar “Aerosols in biomass combustion,” March 2005, Graz, Austria, book series "Thermal biomass utilization", vol 6, Graz, Austria, pp 119–132, ISBN 3-9501980-2-4

    Google Scholar 

  46. Obernberger I (2010) The present state and future development of industrial biomass combustion for heat and power generation (keynote lecture). In: Proceedings of the ASME-AIT-UIT 2010 conference on thermal and environmental issues in energy systems, Sorento, May 2010, vol I. Editione ETS, Pisa, pp 9–25. ISBN 978-884672659-9

    Google Scholar 

  47. Obernberger I, Brunner T, Frandsen F, Skifvars B, Backman R, Brouwers JJH, van Kemenade E, Müller M, Steurer C, Becher U (2003) Aerosols in fixed-bed biomass combustion – formation, growth, chemical composition, deposition, precipitation and separation from flue gas. Final report, EU project No. NNE5-1999-00114, European Commission DG Research, Brussels

    Google Scholar 

  48. Riedl R, Obernberger I (1997) Corrosion and fouling in boilers of biomass combustion plants – active oxidation in boiler tubes. In: Proceedings of the 4th European conference on industrial furnaces and boilers, Porto, April 1997. INFUB, Rio Tinto

    Google Scholar 

  49. Waldmann B (2007) Korrosion in Anlagen zur thermischen Abfallverwertung – elektrochemische Korrosionserfassung und Modellbildung. PhD thesis. University Augsburg, Augsburg

    Google Scholar 

  50. Haider F, Horn S, Waldmann B, Warnecke R (2007) Korrosionssonden-Ergebnisse zu Messungen in verschiedenen Anlagen. In: VDI-Wissensforum (Hrsg.): Beläge und Korrosion, Verfahrenstech-nik und Konstruktion in Großfeuerungsanlagen – Seminar am 12–13 Juni 2007 in Frankfurt/Main. VDI-Verlag, Düsseldorf

    Google Scholar 

  51. Scharler R, Zahirovic S, Schulze K, Kleditzsch S, Obernberger I (2006) Simulations¬gestützte Auslegung und Optimierung von Biomassefeuerungs- und Kesselanlagen – Einsatzmöglichkeiten, Stand der Technik und innovative Methoden. In: Österreichische Ingenieur- und Architektenzeitung (ÖIAZ), vol 10–12, pp 296–309. ISSN 0721-9415

    Google Scholar 

  52. Obernberger I Scharler R (eds.) (2006) CFD modelling of biomass combustion systems. Progr Comput Fluid Dynamics 6(4/5)

    Google Scholar 

  53. Zahirovic S, Scharler R, Obernberger I (2006) Advanced CFD modelling of pulverised biomass combustion. In: Proceedings of the international conference science in thermal and chemical biomass conversion, Victoria, Canada, CPL Press, UK, pp 267–283, ISBN 1-872691-97-8

    Google Scholar 

  54. Zahirovic S (2008) CFD analysis of gas phase combustion and NOx formation in biomass packed-bed furnaces – a contribution towards quantitative prediction of CO and NOx formation. PhD thesis, Graz University of Technology, Austria

    Google Scholar 

  55. Stubenberger G, Scharler R, Obernberger I (2007) Nitrogen release behavior of different biomass fuels under lab-scale and pilot-scale conditions. In: Proceedings of the 15th European biomass conference & exhibition, Berlin, Germany, ETA-Renewable Energies, Florence, Italy. pp 1412–14120, ISBN 978-88-89407-59-X, ISBN 3-936338-21-3

    Google Scholar 

  56. Widmann E, Scharler R, Stubenberger G, Obernberger I (2004) Release of NOx precursors from biomass fuel beds and application for CFD-based NOx postprocessing with detailed chemistry. In: Proceedings of the 2nd World conference and exhibition on biomass for energy, industry and climate protection, Rome, Italy, vol II, ETA-Florence, Italy, pp 1384–1387, ISBN 88-89407-04-2

    Google Scholar 

  57. Scharler R, Zahirovic S, Schulze K, Kleditzsch S, Obernberger I (2006) Simulations¬gestützte Auslegung und Optimierung von Biomassefeuerungs- und Kesselanlagen – Einsatzmöglichkeiten, Stand der Technik und innovative Methoden. In: Österreichische Ingenieur- und Architektenzeitung (ÖIAZ), vol 10–12 (2006), pp 296–309, ISSN 0721-9415

    Google Scholar 

  58. Schulze K, Scharler R, Telian M, Obernberger I (2010) Advanced modelling of deposit formation in biomass furnaces – investigation of mechanisms and comparison with deposit measurements in a small-scale pellet boiler. In: Proceedings of the International Conference “Impacts on fuel quality on power production and environment,” Aug 29th–Sept 2nd, Lapland, Finland, EPRI, Palo Alto, CA

    Google Scholar 

  59. Schulze K, Scharler R, Obernberger I (2011) Development of biomass fired boilers with an advanced CFD model for ash deposit and aerosol formation. In: Proceedings of the 9th European conference on industrial furnaces and boilers, April 2011, Estoril, Portugal, CENERTEC, Portugal. ISBN 978-972-99309-6-6

    Google Scholar 

  60. Scharler R, Kuerten JGM, Schulze K, Obernberger I (2007) Numerical simulation of ash particle impaction in tube bundles – A case study as a basis for a CFD based ash deposit formation model in convective heat exchangers. In: Tagungsband zum 23. Deutschen Flammentag, September 2007, Berlin, Germany, VDI-Bericht Nr. 1988, ISSN 0083-5560, ISBN 978-3-18-091988-1, pp. 299-309, VDI-Verlag Düsseldorf (Hrsg.)

    Google Scholar 

  61. Van Kessel L (2003) Stochastic disturbances and dynamics of thermal processes, PhD thesis, Eindhoven Technical University, Eindhoven

    Google Scholar 

  62. Bauer R, Gölles M, Brunner T, Dourdoumas N, Obernberger I (2007) Modellierung der Druck- und Volumenstrom-verhältnisse in einer Biomasse-Feuerung. Automatisierungstechnik 55(8):404–410

    Article  Google Scholar 

  63. Bauer R, Gölles M, Brunner T, Dourdoumas N, Obernberger I (2008) Modelling of grate combustion in a medium scale biomass furnace for control purposes. Biomass and Bioenerg 34(4):417–427

    Article  CAS  Google Scholar 

  64. Gölles M (2008) Development of mathematical models of a biomass grate furnace as a basis for model based control strategies. PhD thesis, Graz University of Technology, Austria

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingwald Obernberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Obernberger, I., Biedermann, F. (2012). Biomass Energy Heat Provision in Modern Large-Scale Systems . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_316

Download citation

Publish with us

Policies and ethics