Skip to main content

Radionuclide Migration from Catchments , Modeling

  • Reference work entry
Encyclopedia of Sustainability Science and Technology
  • 142 Accesses

Definition of the Subject and Its Importance

A catchment , or drainage basin , is a delimited geographic area that collects water from rain and melting snow and ice flowing to a point of discharge into a water body. Catchments are complex ecosystems of significant economic, social, and environmental value. They play a major role in determining the water quality of streams, rivers, lakes. The portion of waters flowing through the catchment that reaches the point of discharge, the so-called runoff, transports dissolved and particulate substances, such as minerals, nutrients, eroded soil particles, that significantly influence the chemical and the biological characteristics of the water body that receives the runoff.

Catchments comprise terrestrial and aquatic ecosystems including forests, grasslands, ponds, etc., whose behavior is influenced by a great many natural and nonnatural factors that depend on geographic, geological, and climatic conditions and on the impact on the environment...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Catchment:

A delimited geographical area that collects water from rain and melting snow and ice flowing to a point of discharge into a water body.

Deposit:

Radionuclide inventory in a catchment, often expressed as radionuclide per square meter (Bq m−2).

Radionuclide deposition:

The process of migration to exposed surfaces of a radionuclide dispersed in the atmosphere.

Radionuclide washout:

The process of migration of a radionuclide transported by runoff waters from the catchment to a water body.

Runoff:

The portion of precipitation on a catchment that is discharged into a water body.

Transfer function:

(of radionuclide deposited over a catchment) The amount of radionuclide flowing per unit time from upstream drainage basin to a water body following a single-pulse deposition of radioactive substance.

Bibliography

Primary Literature

  1. Horowitz AJ, Lum KR, Garbarino JR, Hall GEM, Lemieux C, Demas CR (1996) Problems associated with using filtration to define dissolved trace element concentrations in natural water samples. Environ Sci Technol 30:954–963

    Article  CAS  Google Scholar 

  2. Eisenbud M (1963) Environmental radioactivity. McGraw-Hill, New York/San Francisco/Toronto/London

    Google Scholar 

  3. Fowler EB (1965) Radioactive fallout, soils, plants, foods, man. Elsevier, Amsterdam/London/New York

    Google Scholar 

  4. Menzel RG (1960) Transport of strontium-90 in runoff. Science 13:499–500

    Article  Google Scholar 

  5. Yamagata N, Matsuda S, Kodaira K (1963) Run-off of caesium-137 and strontium-90 from rivers. Nature 200:668–669

    Article  Google Scholar 

  6. De Cort M, Dubois G, Fridman D, Germenchuk M, Izrael YA, Janssen A, Jones AR, Kelly GN, Kvasnikova EV, Matveenko II, Nazarov IM, Pokumeiko YM, Sitak VA, Stukin ED, Tabachny LY, Tsaturov YS, Avdyushin SI (1998) Atlas of caesium deposition on Europe after the Chernobyl accident. EUR Report 16733, Luxemburg

    Google Scholar 

  7. Hilton J, Livens FR, Spezzano P, Leonard DRP (1993) Retention of radioactive caesium by different soils in the catchment of a small lake. Sci Total Environ 129:253–266

    Article  CAS  Google Scholar 

  8. Santschi PH, Bollhander S, Zingg S, Luck A, Farrenkothen K (1990) The self-cleaning capacity of surface waters after radioactive fallout. Evidence from European Waters after Chernobyl, 1986–1988. Environ Sci Technol 24:519–527

    Article  CAS  Google Scholar 

  9. Monte L (1995) Evaluation of radionuclide transfer functions from drainage basins of fresh water systems. J Environ Radioactiv 26:71–82

    Article  CAS  Google Scholar 

  10. Kaniviets VV, Voitcekhovich OV (1992) Scientific report: Radioecology of water systems in zone of consequences of Chernobyl accident. Report of Ministry of Chernobyl Affairs of Ukraine. Contract Number 1/92 (in Russian)

    Google Scholar 

  11. Mundschenk H (1992) Ueber Nachwirkungen des Reaktorunfalls in Tschernobyl im Bereich der “alten” Bundeswasserstrassen. (On long term effects of the Accident of the Nuclear Power Plant in Chernobyl in the German Federal Waterways) Sonderdruck aus: Deutsche Gewaesserkundliche Mitteilungen 36:7–19 (in German)

    Google Scholar 

  12. Maringer FJ (1994) Das Verhalten von Radionukliden im Wasser, Schwebstoff und Sediment der Donau. Dissertation, Technischen Universität Wien (in German)

    Google Scholar 

  13. Sunblad B, Bergström U, Evans S (1991) Long term transfer of fallout from the terrestrial to the aquatic environment. In: Moberg L (ed) The Chernobyl fallout in Sweden. Results from a research program on environmental radiology. The Swedish Radiation Protection Institute, Stockholm

    Google Scholar 

  14. Vray F, Debayle C, Louvat D (2003) Long-term flux of Chernobyl-derived 137Cs from soil to French rivers: A study on sediment and biological indicators. J Environ Radioactiv 68:93–114

    Article  CAS  Google Scholar 

  15. Smith JT, Clarke RT, Saxén R (2000) Time-dependent behaviour of radiocaesium: a new method to compare the mobility of weapons test and Chernobyl derived fallout. J Environ Radioactiv 49:65–83

    Article  CAS  Google Scholar 

  16. Smith JT, Konoplev AV, Bulgakov AA, Comans RNJ, Cross MA, Kaminski S, Khristuk B, Klemt E, de Koning A, Kudelsky AV, Laptev G, Madruga M-J, Voitsekhovitch OV, Zibold G (2002) Simplified models for predicting 89Sr, 90Sr, 134Cs, 137Cs, 131I in water and fish of rivers, lakes and reservoirs, AQUASCOPE Technical Deliverable. CEH Centre for Ecology and Hydrology, Natural Environment Research Council, United Kingdom

    Google Scholar 

  17. Monte L (1997) A collective model for predicting the long-term behaviour of radionuclides in rivers. Sci Total Environ 2001:17–29

    Article  Google Scholar 

  18. Smith JT, Wright SM, Croos MA, Monte L, Kudelsky A, Saxen R, Vakulovsky A, Timms D (2004) Global analysis of the riverine transport of 90Sr and 137Cs. Environ Sci Technol 38:850–857

    Article  CAS  Google Scholar 

  19. Kivva SL, Zheleznyak MI (2000) Hydrological and physico-chemical processes determining radionuclide redistribution. In: van der Perck M, Svetlitchnyi AA, den Basten J, Wielinga A (eds) SPARTACUS, Spatial redistribution of radionuclides within catchments. Final report EC Contract n° IC15CT980215. Utrecht University, The Netherlands

    Google Scholar 

  20. Håkanson L (2006) Suspended particulate matter in lakes, rivers, and marine systems. The Blackburn Press, Caldwell

    Google Scholar 

  21. Wanielista PM (1990) Hydrology and water quality control. Wiley, New York

    Google Scholar 

  22. Benes P, Picat P, Gernik M, Quinault S (1992) Kinetics of radionuclide interaction with suspended solids in modeling the migration of radionuclides in rivers. (Part I and II). J Radioanal Nucl Chem 159:175–200

    Article  CAS  Google Scholar 

  23. Cremers A, Henrion PN (1984) Radionuclide partitioning in sediments: theory and practice. In: Seminar on the Behaviour of Radionuclides in Estuaries, Renesse (The Netherlands), 17–21 September 1984. Commission of the European Communities, XII/380/85-EN: 1–25

    Google Scholar 

  24. Delle Site A (2000) Factors affecting sorption of organic compound in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data 29(6):1–253

    Google Scholar 

  25. Zheleznyak M, Demchenco R, Khursin S, Kuzmenko Yu, Tkalich P, Vitjuk N (1992) Mathematical modelling of radionuclide dispersion in the Prypiat-Dnieper aquatic system after the Chernobyl accident. Sci Total Environ 112:89–114

    Article  CAS  Google Scholar 

  26. Garcia-Sanchez L (2008) Watershed wash-off of atmospherically deposited radionuclides: review of the fluxes and their evolution with time. J Environ Radioactiv 99:563–573

    Article  CAS  Google Scholar 

  27. Garcia-Sanchez L, Konoplev AV (2009) Watershed wash-off of atmospherically deposited radionuclides: a review of normalized entrainment coefficients. J Environ Radioactiv 100:774–778

    Article  CAS  Google Scholar 

  28. Monte L, Brittain EJ, Håkanson L, Smith JT, van der Perk M (2004) Review and assessment of models for predicting the migration of radionuclides from catchments. J Environ Radioactiv 75:83–103

    Article  CAS  Google Scholar 

  29. Håkanson L, Monte L (2003) Radioactivity in Lakes and Rivers. In: Scott EM (ed) Modelling radioactivity in the environment. Elsevier Science, Oxford

    Google Scholar 

  30. Agüero A, García-Olivares (2000) CIEMAT model results for Esthwaite water. In: Modelling of the transfer of radiocaesium from deposition to lake ecosystems. Report of the VAMP Aquatic Working Group. IAEA-TECDOC-1143, International Atomic Energy Agency, Vienna

    Google Scholar 

  31. Bäverstam U, Fraser G, Kelly GN (eds) (1997) Decision making support for off-site emergency management. Radiat Prot Dosim 73:1–317

    Google Scholar 

  32. BIOMOVS II (1996) Wash-off of Sr-90 and Cs-137 from two experimental plots: model testing using Chernobyl data. Technical report No. 9. Swedish Radiation Protection Institute, Stockholm

    Google Scholar 

  33. Heling R, Zheleznyak M, Raskob W, Popov A, Borodin R, Gofman D, Lyashenko G, Marinets A, Pokhil A, Shepeleva T, Tkalich P (1997) Overview of the modelling of hydrological pathways in RODOS. Radiat Prot Dosim 73:67–70

    Article  CAS  Google Scholar 

  34. International Atomic Energy Agency (IAEA) (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series no. 472. Vienna

    Google Scholar 

  35. Karickoff SW (1986) Pollutant sorption in environmental systems. In: Brock Nelly W, Blau GE (eds) Environmental exposure from chemicals, vol I. CRC Press, Boca Raton

    Google Scholar 

  36. Comans RNJ, Hockley DE (1992) Kinetics of cesium sorption on illite. Geochim Cosmochim Acta 56:1157–1164

    Article  CAS  Google Scholar 

  37. Korhonen R (1990) Modeling transfer of 137Cs in a large Finnish watercourse. Health Phys 59:443–454

    Article  CAS  Google Scholar 

  38. Håkanson L (1995) Optimal size of predictive models. Ecol Modell 78:195–204

    Article  Google Scholar 

  39. Carlsson S (1978) A model for the movement and loss of 137Cs in a small watershed. Health Phys 34:33–73

    Article  CAS  Google Scholar 

  40. Helton JC, Muller AB, Bayer A (1985) Contamination of surface – water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides. Health Phys 48:757–771

    Article  CAS  Google Scholar 

  41. Håkanson L (2004) A new generic sub-model for radionuclide fixation in large catchments from continuous and single-pulse fallouts, as used in a river model. J Environ Radioactiv 77:247–273

    Article  CAS  Google Scholar 

  42. Bulgakov A, Konoplev A, Popov V, Scherbak A (1991) Removal of long-lived radionuclides from the soil by surface runoff near the Chernobyl nuclear power station. Sov Soil Sci 23:124–131

    Google Scholar 

  43. Konoplev A, Bulgakov A, Popov V, Bobovnikova TI (1992) Behaviour of long-lived Chernobyl radionuclides in a soil–water system. Analyst 117:1041–1047

    Article  CAS  Google Scholar 

  44. Joshi SR, Shukla BS (1991) The role of water/soil distribution coefficient in the watershed transport of environmental radionuclides. Earth Planet Sci Lett 105:314–318

    Article  CAS  Google Scholar 

  45. Monte L (1998) Predicting the migration of dissolved toxic substances from catchments by a collective model. Ecol Modell 110:269–279

    Article  CAS  Google Scholar 

  46. Sheppard MI, Thibault DH (1990) Default soil solid/liquid partition coefficients, kds, for four major soil types: a compendium. Health Phys 59:471–482

    CAS  Google Scholar 

  47. Monte L, Periañez R, Kivva S, Laptev G, Angeli G, Barros H, Zheleznyak M (2006) Assessment of state-of-the-art models for predicting the remobilisation of radionuclides following the flooding of heavily contaminated areas: the case of Pripyat River floodplain. J Environ Radioactiv 88:267–288

    Article  CAS  Google Scholar 

  48. Spezzano P, Bortoluzzi S, Giacomelli R, Massironi L (1994) Seasonal variations of 137Cs activities in the Dora Baltea River (Northwest Italy) after the Chernobyl Accident. J Environ Radioactiv 22:77–88

    Article  Google Scholar 

  49. Monte L, Brittain JE, Håkanson L, Heling R, Smith JT, Zheleznyak M (2003) Review and assessment of models used to predict the fate of radionuclides in lakes. J Environ Radioactiv 69:177–205

    Article  CAS  Google Scholar 

  50. Monte L, Boyer P, Brittain JE, Håkanson L, Lepicard S, Smith JT (2005) Review and assessment of models for predicting the migration of radionuclides through rivers. J Environ Radioactiv 79:273–296

    Article  CAS  Google Scholar 

  51. Monte L, Håkanson L, Periañez R, Laptev G, Zheleznyak M, Maderich V, Angeli G, Koshebutsky V (2006) Experiences from a case study of multi-model application to assess the behaviour of pollutants in the Dnieper-Bug Estuary. Ecol Modell 195:247–263

    Article  Google Scholar 

Books and Reviews

  • Moldan B, Černý B (eds) (1994) Biogeochemistry of small catchments: a tool for environmental research. SCOPE 51. Wiley, England, pp 419

    Google Scholar 

  • Sir Warner F, Harrisson RM (eds) (1993) Radioecology after Chernobyl. Biogeochemical pathways of artificial radionuclides. SCOPE 50. Wiley, England, pp 367

    Google Scholar 

  • Scott EM (ed) (2003) Modelling radioactivity in the environment. Elsevier Science, Oxford, p 427

    Google Scholar 

  • Degens ET, Kempe S, Richey JE (eds) (1991) Biogeochemistry of major world rivers. SCOPE 42. Wiley, England, pp 356

    Google Scholar 

  • Wanielista M (1990) Hydrology and water quality control. Wiley, New York, p 565

    Google Scholar 

  • Håkanson L (2006) Suspended particulate matter in lakes, rivers, and marine systems. Blackburn Press, Caldwell, p 319

    Google Scholar 

  • Shukla SB (1993) Watershed, river, and lake modeling through environmental radioactivity. Environmental Research & Publications Inc, Hamilton, p 227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Monte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Monte, L. (2012). Radionuclide Migration from Catchments , Modeling. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_287

Download citation

Publish with us

Policies and ethics