Skip to main content

Geologic Carbon Sequestration : Sustainability and Environmental Risk

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

Definition of Subject and Its Importance

Carbon dioxide (CO2) capture and storage (CCS) is a combination of technologies that addresses climate change by directly reducing the net CO2 emissions arising from the use of fossil fuels as the main global primary energy source [1]. In CCS as commonly envisioned, CO2 will be captured from flue gases at point sources such as coal-fired power plants, compressed, transported by pipeline, and injected into deep geologic formations for permanent storage (i.e., geologic sequestration) (Fig. 1).

Geologic Carbon Sequestration: Sustainability and Environmental Risk. Figure 1
figure 756

Schematic of the carbon dioxide capture and storage (CCS) process (CO2CRC, http://www.co2crc.com.au/aboutccs/)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Carbon dioxide capture and storage (CCS):

The capture of CO2 from fossil-fuel power plants and other industrial point sources and its injection through wells into deep geologic formations for permanent storage.

Consequence:

An impact arising from the occurrence of an event or process. For example, the consequence of high CO2 concentrations in the atmosphere is global warming.

Geologic carbon sequestration (GCS) = geologic CO2 storage (GCS):

The last step of CCS in which CO2 is injected through wells into deep subsurface formations for permanent storage.

Hazard:

A potential impact or consequence of an event or process. For example, high CO2 emissions are a hazard to climate because CO2 is a greenhouse gas.

Likelihood:

The probability or degree of potential for an event or process to occur. For example, the likelihood of CO2 emissions to increase is very high given population growth and worldwide increases in standard of living.

Risk:

The product of likelihood and consequence of an event or process. For example, the risk of climate change is very high because both the likelihood and the consequences are high.

Storage Resource (capacity):

Physical pore-space volume available for CO2 storage irrespective of economics or regulations.

Storage Reserve (capacity):

Pore-space volume available for CO2 storage including reductions accounting for economic, legal, environmental, and regulatory factors.

Bibliography

Primary Literature

  1. Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) (2005) IPCC special report on carbon dioxide capture and storage. Prepared by working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  2. Torp TA, Gale J (2004) Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects. Energy 29(9–10):1361–1369

    Article  CAS  Google Scholar 

  3. Mathieson A, Midgley J, Dodds K, Wright I, Ringrose P, Saoul N (2010) CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Lead Edge 29(2):216–222

    Article  Google Scholar 

  4. Keith DW, Ha-Duong M, Stolaroff JK (2006) Climate strategy with CO2 capture from the air. Clim Change 74(1–3):17–45

    Article  CAS  Google Scholar 

  5. Lackner K (2010) Washing carbon out of the air. Sci Am Mag Sci Am 302:66–71. doi:10.1038/scientificamerican0610-66

    Article  CAS  Google Scholar 

  6. Brewer PG, Friederich G, Peltzer ET, Orr FM Jr (1999) Direct experiments on the ocean disposal of fossil fuel CO2. Science 284(5416):943–945

    Article  CAS  Google Scholar 

  7. Caldeira K, Rau GH (2000) Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: geochemical implications. Geophys Res Lett 27(2):225–228

    Article  CAS  Google Scholar 

  8. Chisholm SW, Falkowski PG, Cullen JJ (2001) Dis-crediting ocean fertilization. Science 294(5541):309–310

    Article  CAS  Google Scholar 

  9. Buesseler KO, Boyd PW (2003) Will ocean fertilization work? Science 300(5616):67–68

    Article  CAS  Google Scholar 

  10. Shaffer G (2010) Long-term effectiveness and consequences of carbon dioxide sequestration. Nat Geosci 3:464–467

    Article  CAS  Google Scholar 

  11. House KZ, Harvey CF, Aziz MJ, Schrag DP (2009) The energy penalty of post-combustion CO2 capture & storage and itsimplications for retrofitting the U.S. installed base. Energy Environ Sci. doi:10.1039/b811608c

    Google Scholar 

  12. McKinsey and Co. (2008) Carbon capture and storage: assessing the economics. McKinsey&Company, New York, NY, p 49

    Google Scholar 

  13. IEA, Key World Energy Statistics (2009) International Energy Agency (IEA), Paris, http://www.iea.org/textbase/nppdf/free/2009/key_stats_2009.pdf

  14. Keeling RF, Piper SC, Bollenbacher AF, Walker JS (2009) In: Trends A (ed) Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn. doi:10.3334/CDIAC/atg.035 (Atmospheric CO2 records from sites in the SIO air sampling network)

    Google Scholar 

  15. Core Writing Team, Pachauri, RK and Reisinger, A (eds) (2007) IPCC, Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 104

    Google Scholar 

  16. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686):968–972

    Article  CAS  Google Scholar 

  17. Preston C, Monea M, Jazrawi W, Brown K, Whittaker S, White D, Law D, Chalaturnyk R, Rostron B (2005) IEA GHG Weyburn CO2 monitoring and storage project. Fuel Process Technol 86(14–15):1547–1568

    Article  CAS  Google Scholar 

  18. Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35(9):4444–4454

    Article  Google Scholar 

  19. Wilson EJ, Gerard D (2007) Risk assessment and management for geologic sequestration of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration integrating technology, monitoring, and regulation. Blackwell, Oxford, pp 101–125

    Google Scholar 

  20. Benson SM, Cook PJ (eds) (2005) IPCC Special report on CO2 capture and storage, chap. 5. Cambridge University Press, Cambridge

    Google Scholar 

  21. Oldenburg CM (2007) Migration mechanisms and potential impacts of CO2 leakage and seepage. In: Wilson E, Gerard D (eds) Carbon capture and sequestration integrating technology, monitoring, and regulation. Blackwell, Ames, pp 127–146 (BNL-58872)

    Google Scholar 

  22. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44(3):277–289

    Article  CAS  Google Scholar 

  23. Spycher N, Ennis-King J, Pruess K (2003) CO2-H2O mixtures in the geological sequestration of CO2. Assessment and calculation of mutual solubilities from 12 C to 100 C and up to 600 bar. Geochemica Cosmochim Acta 67:3015–3031

    Article  CAS  Google Scholar 

  24. Gunter WD, Bachu S, Benson S (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geol Soc Lond Spec Publ 233:129–145

    Article  CAS  Google Scholar 

  25. Xu T, Apps JA, Pruess K (2005) Mineral sequestration of CO2 in a sandstone-shale system. Chem Geol 217(1–4):295–318

    Article  CAS  Google Scholar 

  26. Benson SM, Hepple R, Apps J, Tsang C-F, Lippmann M (2002) Lessons learned from natural and industrial analogues for storage of carbon dioxide in deep geological formations, E.O. Lawrence Berkeley National Laboratory Report LBNL-51170

    Book  Google Scholar 

  27. Katz DL, Tek MR (1981) Overview on underground storage of natural gas. J Petrol Technol 33(6):943–951

    Google Scholar 

  28. USGS (2010) http://energy.er.usgs.gov/health_environment/co2_sequestration/co2_illustrations.html. Accessed 6 Oct 2010

  29. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325(5948):1647–1652

    Article  CAS  Google Scholar 

  30. Shrag DP (2009) Storage of carbon dioxide in offshore sediments. Science 325:1658–1659

    Article  CAS  Google Scholar 

  31. NATCARB (2008) U.S. Department of energy, carbon sequestration Atlas of the United States and Canada, Office of fossil energy, National energy technology laboratory. http://geoportal.kgs.ku.edu/natcarb/atlas08/gsinks.cfm. Accessed 6 Oct 2010

  32. McCoy ST, Rubin ES (2008) An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int J Greenhouse Gas Control 2(2):219–229

    Article  CAS  Google Scholar 

  33. Brennan ST, Burruss RC, Merrill MD, Freeman PA, Ruppert LF (2010) A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage: U.S. Geological survey open-file report 2010–1127, p 31. Available only at http://pubs.usgs.gov/of/2010/1127. Accessed 6 Oct 2010

  34. Bradshaw J, Bachu S, Bonijoly D, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenhouse Gas Control 1:62–68

    Article  CAS  Google Scholar 

  35. USEPA (United States Environmental Protection Agency), Technical program overview, underground injection control regulations, office of water 4606, EPA 816-R-02-025. Revised July 2001. http://www.epa.gov/safewater/uic/index.html. Accessed 10 Oct 2010

  36. Qi J, Marshall JD, Matson KG (1994) High soil carbon dioxide concentrations inhibit root respiration of Douglas Fir. New Phytology 128:435–441

    Article  Google Scholar 

  37. Farrar CD, Sorey ML, Evans WC, Howie JF, Kerr BD, Kennedy BM, King C-Y, Southon JR (1995) Forest-killing diffuse CO2 emission at mammoth mountain as a sign of magmatic unrest. Nature 376:675–677

    Article  CAS  Google Scholar 

  38. Oldenburg CM, Unger AJA (2003) On leakage and seepage from geologic carbon sequestration sites: unsaturated zone attenuation. Vadose Zone J 2(3):287–296

    CAS  Google Scholar 

  39. Oldenburg CM, Lewicki, JL (2005) Leakage and seepage of CO2 from geologic carbon sequestration sites: CO2 migration into surface water, Lawrence Berkeley National Laboratory Report LBNL-57768

    Book  Google Scholar 

  40. Giggenbach WF, Sano Y, Schmincke HU (1991) CO2-rich gases from lakes nyos and monoun, cameroon; laacher see, Germany, Dieng, Indonesia, and Mt. Gambier, Australia- variations on a common theme. J Volcanol Geotherm Res 45:311–323

    Article  CAS  Google Scholar 

  41. Robinson AL, Sextro RG, Riley WJ (1997) Soil-gas entry into houses driven by atmospheric pressure fluctuations–the influence of soil properties. Atmos Environ 31(10):1487–1495

    Article  CAS  Google Scholar 

  42. Hanna SR, Steinberg KW (2001) Overview of Petroleum Environmental Research Forum (PERF) dense gas dispersion modeling project. Atmos Environ 35:2223–2229

    Article  CAS  Google Scholar 

  43. Britter RE (1989) Atmospheric dispersion of dense gases. Ann Rev Fluid Mech 21:317–344

    Article  Google Scholar 

  44. Wang S, Jaffe PR (2005) Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations; effect of dissolution kinetics. Energy Convers Manage 45:2833–2848

    Article  CAS  Google Scholar 

  45. Apps JA, Zheng L, Zhang Y, Xu T, Birkholzer JT (2010) Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geological storage. Transp Porous Media 82:215–246

    Article  CAS  Google Scholar 

  46. Birkholzer JT, Zhou Q, Tsang C-F (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on the pressure response in stratified systems. Int J Greenhouse Gas Control 3(2):181–194

    Article  CAS  Google Scholar 

  47. Birkholzer JT, Zhou Q (2009) Basin-Scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int J Greenhouse Gas Control 3(6):745–756

    Article  CAS  Google Scholar 

  48. Majer EL, Baria R, Stark M, Oates S, Bommer J, Smith B, Asanuma H (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics 36(3):185–222

    Article  Google Scholar 

  49. Majer E, Baria R, Stark M (2008) Protocol for induced seismicity associated with enhanced geothermal systems. Report produced in Task D Annex I (, International energy agency-geothermal implementing, agreement (incorporating comments by: Bromley C, Cumming W, Jelacic A and Rybach A) (http://www.iea-gia.org/publications.asp)

  50. Pruess K (2005) Numerical studies of fluid leakage from a geologic disposal reservoir for CO2 show self-limiting feedback between fluid flow and heat transfer. Geophys Res Lett 32(14):L14404

    Article  CAS  Google Scholar 

  51. Skinner L (2003) CO2 blowouts: an emerging problem. World Oil 224(1):38–42

    Google Scholar 

  52. Gouveia FJ, Johnson M, Leif, RN, Friedmann SJ (2005) Aerometric measurement and modeling of the mass of CO2 emissions from Crystal Geyser, Utah. NETL 4th Annual carbon capture and sequestration conference. Alexandria, p 2–5

    Book  Google Scholar 

  53. Aines RD, Leach MJ, Weisgraber TH, Simpson MD, Friedman SJ, Bruton CJ (2008) Quantifying the potential exposure hazard due to energetic releases from a failed sequestration well. In: Proceedings of the ninth international conference on greenhouse gas control technologies GHGT-9. Washington, p 16–20

    Google Scholar 

  54. Gasda SE, Bachu S, Celia MA (2004) Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ Geol 46:707–720

    Article  CAS  Google Scholar 

  55. Scherer GW, Celia MA, Prevost J-H, Bachu S, Bruant R, Duguid A, Fuller R, Gasda SE, Radonjic M, Vichit-Vadakan W (2005) Leakage of CO2 through abandoned wells: role of corrosion of cement. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations, vol 2. Elsevier, Amsterdam, pp 827–848

    Google Scholar 

  56. Shipton ZK, Evans JP, Kirschner D, Kolesar PT, Williams AP, Heath J (2004) Analysis of CO2 leakage through ‘low-permeability’ faults from natural reservoirs in the Colorado Plateau, southern Utah. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. Geological society, vol 233. Special Publications, London, pp 43–58

    Google Scholar 

  57. Onstott TC (2005) Impact of CO2 injections on deep subsurface microbial ecosystems and potential ramifications for the surface biosphere. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations, vol 2. Elsevier, London, pp 1217–1249

    Google Scholar 

  58. Schuett H, Wigand M, Spangenberg E (2005) Geophysical and geochemical effects of supercritical CO2 on sandstones. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations, vol 2. Elsevier, Amsterdam, pp 767–786

    Google Scholar 

  59. Kharaka Y, Cole DR, Hovorka SS, Gunther WD, Knauss KG, Freifield BM (2006) Gas-water-rock interactions in Frio formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology 34:577–580

    Article  CAS  Google Scholar 

  60. Kharaka YK, Thordsen JJ, Kakouros E, Ambats G, Herkelrath WN, Birkholzer JT, Apps JA, Spycher NF, Zheng L, Trautz RC, Rauch HW, Gullickson K (2010) Changes in the Chemistry of Shallow Groundwater Related to the 2008 Injection of CO2 at the ZERT Field, SiteBozeman, Montana. Environ Earth Sci 60:273–284

    Article  CAS  Google Scholar 

  61. Carroll S (May 2009) Trace metal release from Frio sandstone reacted with CO2 and 1.5 N NaCl Brine at 60°C. In: Proceedings 8th Annual conference on carbon capture and sequestration. Pittsburgh

    Google Scholar 

  62. Keating EH, Fessenden J, Kanjorski N, Koning DJ, Pawar R (2010) The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration. Environ Earth Sci 60(3):521–536

    Article  CAS  Google Scholar 

  63. Price PN, Oldenburg CM (2009) The consequences of failure should be considered in siting geologic carbon sequestration projects. Int J Greenhouse Gas Control 3(5):658–663

    Article  CAS  Google Scholar 

  64. Wilson EJ, Johnson TL, Keith DW (2003) Regulating the Ultimate Sink: managing the risks of geologic CO2 storage. Environ Sci Technol 37(16):3476–3483

    Article  CAS  Google Scholar 

  65. Nicot J-P (2008) Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Int J Greenhouse Gas Control 2(4):582–593

    Article  CAS  Google Scholar 

  66. Zhou Q, Birkholzer JT, Mehnert E, Lin Y-F, Zhang K (2009) Modeling basin- and plume-Scale Processes of CO2 storage for full-scale deployment. Ground Water 48(4):494–514

    Article  CAS  Google Scholar 

  67. Nicot J-P, Oldenburg CM, Bryant SL, Hovorka SD (2009) Pressure perturbations from geologic carbon sequestration: area-of-review boundaries and borehole leakage driving forces. Energy Procedia 1(1):47–54

    Article  CAS  Google Scholar 

  68. Oldenburg CM, Rinaldi AP (2011) Buoyancy effects on upward brine displacement caused by CO2 injection, Transport in Porous Media 87(2):525–540

    Article  CAS  Google Scholar 

  69. Hollister JC, Weimer RJ (eds) (1968) Geophysical and geological studies of the relationships between the Denver earthquakes and the Rocky Mountain Arsenal well. Q. Colorado School of Mines 63, Golden, p 251

    Google Scholar 

  70. Hoover DB, Dietrich JA (1969) Seismic activity during the 1968 test pumping at the Rocky Mountain arsenal disposal well, circular 613, U.S. Geological Survey, Washington

    Google Scholar 

  71. Herrmann RB, Park S-K, Wang C-Y (1981) The Denver earthquakes of 1967–1968. Bull Seismol Soc Am 71(3):731–745

    Google Scholar 

  72. Cypser DA, Davis SD (1998) Induced seismicity and the potential for liability under U.S. law. Tectonophysics 289(1–3):239–255

    Article  Google Scholar 

  73. Rutqvist J, Birkholzer J, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manage 48(6):1798–1807

    Article  CAS  Google Scholar 

  74. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 17:185–188

    Google Scholar 

  75. Sminchak J, Gupta N, Byrer C, Bergman P (2003) Aspects of induced seismic activity and deep-well sequestration of carbon dioxide. Environ Geosci 10(2):81–89

    Article  Google Scholar 

  76. Wiprut D, Zoback M (2000) Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea. Geology 28(7):595–598

    Article  CAS  Google Scholar 

  77. Hovorka SD, Benson SM, Doughty C, Freifeld BM, Sakurai S, Daley TM, Kharaka YK, Holtz MH, Trautz RC, Nance HS, Myer LR, Knauss KG (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ Geosci 13(2):105–121

    Article  Google Scholar 

  78. Litynski J, Plasynski S, McIlvried HG, Mahoney C, Srivastava RD (2008) The United States department of energy’s regional carbon sequestration partnerships program validation phase. Environ Int 34(1):127–138

    Article  Google Scholar 

  79. Friedmann SJ, Dooley JJ, Held H, Edenhof O (2006) The low cost of geological assessment for underground CO2 storage: policy and economic implications. Energy Convers Manage 47(13–14):1894–1901

    Article  Google Scholar 

Books and Reviews

  • Baines SJ, Worden RH (eds) (2004) Geologic storage of carbon dioxide, geological society, vol 233. Special Publications, London, pp 1–247

    Google Scholar 

  • Eide LI (2009) Carbon dioxide capture for storage in deep geological formations, vol 3. CPL Press/BP, Newbury, Berkshire

    Google Scholar 

  • Thomas DC, Benson SM (eds) (2007) Carbon dioxide capture for storage in deep geologic formations-results from the CO2 capture project, vol 2. Elsevier, Kidlington, Oxford

    Google Scholar 

  • Wilson EJ, Gerard D (eds) (2007) Carbon capture and sequestration integrating technology, monitoring, and regulation, Blackwell Publishing, Ames, Iowa

    Google Scholar 

Download references

Acknowledgments

This entry greatly benefitted from suggestions and comments by my LBNL colleagues Karsten Pruess, Jens Birkholzer, and Preston Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis M. Oldenburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Oldenburg, C.M. (2012). Geologic Carbon Sequestration : Sustainability and Environmental Risk. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_200

Download citation

Publish with us

Policies and ethics