Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Aquaculture and Renewable Energy Systems, Integration of

  • Bela H. Buck
  • Gesche Krause
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_180

Definition of the Subject

“Fisheries have rarely been sustainable.” This statement by Pauly et al. [5] was based on the recognition that this lack of sustainability was induced by a serial depletion of wild stocks worldwide. Causative for this trend is due to the improved fishing technology , geographical expansion, and exploitation of previously spurned species lower in the food web. In exchange, aquaculture was often either regarded to bridge the gap between supply and demand or, in contrast, even to exacerbate this scenario.

Since the 1970s, aquaculture production has grown quite rapidly and is by now one of the fastest growing aquatic food production sectors in the world [ 6]. Besides the rapid development of this sector, the wide-ranging decline in fisheries yields has been enhanced by an increase in public demand for aquatic products. With an annual share of more than 15% of total animal protein supplies, the production of captured fisheries and aquaculture plays a significant...
This is a preview of subscription content, log in to check access.


  1. 1.
    FAO/FIDI (1989) Aquaculture production (1984–1986) Food and Agriculture Organisation of the United Nations. Rome Fisheries Circular 815, 106Google Scholar
  2. 2.
    FAO (1997) Aquaculture development. Technical guidelines for responsible fisheries. Food and Agriculture Organisation of the United Nations, Rome, pp 5–40Google Scholar
  3. 3.
    EU Commission (2000) On integrated coastal zone management: a strategy for Europe. Communication from the Commission to the Council and the European Parliament, COM(2000) 547 finalGoogle Scholar
  4. 4.
    Garvine R, Kempton W (2008) Assessing the wind field over the continental shelf as a resource for electric power. J Mar Res 66(6):751–773Google Scholar
  5. 5.
    Pauly D, Christensen V, Guénette S, Pitcher TJ, Sumaila RU, Walters CJ, Watson R, Zeller D (2002) Towards sustainability in world fisheries. Nature 418:689–695CrossRefGoogle Scholar
  6. 6.
    FAO (2004) The state of world fisheries and aquaculture-2004 (SOFIA). Fisheries Department. Food and Agriculture Organisation of the United Nations, Rome, ItalyGoogle Scholar
  7. 7.
    FAO (2009) The State of World Fisheries and Aquaculture (SOFIA) 2008, FAO Fisheries and Aquaculture Department. Food and Agriculture Organisation of the United NationsGoogle Scholar
  8. 8.
    Buck BH (2007a) Experimental trials on the feasibility of offshore seed production of the mussels Mytilus edulis in the German Bight: installation, technical requirements and environmental conditions. Helgol Mar Res 61:87–101CrossRefGoogle Scholar
  9. 9.
    Buck BH (2007b) Marikultur als Co-Nutzung in Offshore-Windparks: Status Quo, Probleme und Perspektiven, Meeresumwelt-Symposium 2006: 16. Symposium, 13. bis 14. Juni 2006, CCH – Congress Center Hamburg/Bundesamt für Seeschifffahrt und Hydrographie in Zusammenarbeit mit dem Bundesumweltamt im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, pp 167–179Google Scholar
  10. 10.
    FAO (2006) Fishery information, data and statistics unit. Aquaculture production: values 1984–2004. FISHSTAT Plus – universal software for fishery statistical time series. Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  11. 11.
    Burbridge P, Hendrick V, Roth E, Rosenthal H (2001) Social and economic policy issues relevant to marine aquaculture. J Appl Ichthyol 17:194–206CrossRefGoogle Scholar
  12. 12.
    Rawski TG, Xiao W (2001) Roundtable on Chinese economic statistics: introduction. Chin Econ Rev 12:298–302CrossRefGoogle Scholar
  13. 13.
    Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024CrossRefGoogle Scholar
  14. 14.
    Roth E, Ackefors H, Asche F, Balnath C, Black E, Black K, Boghen A, Browdy C, Burbridge P, Castell JD, Chamberlain G, Dabrowski K, Davies I, Dosdat A, Eleftheriou A, Ervik A, Gordin H, Heinig CS, Hilge V, Karakassis I, Kuhlmann H, Landry T, von Lukowicz M, McGlade J, Price A, Rheault RB, Rosenthal H, Saint-Paul U, Sandifer PA, Saroglia M, Silvert W, SteVens W, Soto D, Varadi L, Verreth J, Verdegem M, Waller U (2002) An intellectual injustice to aquaculture development: a response to the review article on “Effect of aquaculture on world fish supplies”, Report of the ICES working group on environmental interactions of mariculture, F:04 REF ACME, Annex 4, pp 83–89Google Scholar
  15. 15.
    Buck BH (2004) Farming in a high energy environment: potentials and constraints of sustainable offshore aquaculture in the German Bight (North Sea). Dissertation. University of Bremen, GermanyGoogle Scholar
  16. 16.
    Davis A, Bailey C (1996) Common in custom, uncommon in advantage: common property, local elites, and alternative approaches to fisheries management. Soc Nat Resources 9:251–265CrossRefGoogle Scholar
  17. 17.
    Adger WN, Luttrell C (2000) Property rights and the utilisation of wetlands. Ecol Econ 35:75–89CrossRefGoogle Scholar
  18. 18.
    Rana KJ (1997) Aquatic environments and use of species subgroups. In: Review of the state of world aquaculture. FAO Fisheries Circular FIRI/C886 (Rev. 1). Food and Agriculture Organisation (FAO), Rome, Italy, pp 7–16Google Scholar
  19. 19.
    Lee PG, Turk PE (1998) Overview of a modern, shore-based hatchery for offshore mariculture support. In: Stickney RR (ed) Joining forces with industry – open ocean aquaculture. Proceedings of the third annual international conference, May 10–15, Texas Sea Grant College Program, Corpus Christi, pp 87–102Google Scholar
  20. 20.
    Krause G, Buck BH, Rosenthal H (2003) Multifunctional use and environmental regulations: potentials in the offshore aquaculture development in Germany. Proceedings of the multidisciplinary scientific conference on sustainable coastal zone management “Rights and duties in the coastal zone”, 12–14 June 2003. Stockholm, SwedenGoogle Scholar
  21. 21.
    Buck BH, Krause G, Rosenthal H, Smetacek V (2003) Aquaculture and environmental regulations: the German situation within the North Sea. In: Kirchner A (ed) International marine environmental law: institutions, implementation and innovation, vol. 64. International Environmental. Law and Policies Series of Kluwer Law International, The Hague, pp 211–229Google Scholar
  22. 22.
    Firestone J, Kempton W, Krueger A, Loper CE (2004) Regulating offshore wind power and aquaculture: messages from Land and sea. Cornell J Law Public Policy 14(1):71–111Google Scholar
  23. 23.
    Langan R (2009) Co-location of offshore energy and seafood production: potential synergies, compatibilities and conflicts. Conference paper, the ecology of marine wind farms: perspectives on impact mitigation, siting, and future uses, 8th annual Ronald C. Baird Sea Grant Science Symposium, November 2–4 2009, Newport, Rhode IslandGoogle Scholar
  24. 24.
    BMU (2006) Integriertes Küstenzonenmanagement in Deutschland (IKZM). Nationale Strategie mit Bestandsaufnahme nach der EU-Empfehlung 2002/413/EG. Bundesregierung für Umwelt, Naturschutz und Reaktorsicherheit (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety)Google Scholar
  25. 25.
    Kannen A (2004) Holistic systems analysis for ICZM: the Coastal Futures approach. In: Schernewski G, Dolch T (eds) Geographie der Meere und Küsten. Coastline reports, vol 1, pp 171–181Google Scholar
  26. 26.
    Buck BH (2002) Open Ocean Aquaculture und Offshore-Windparks: Eine Machbarkeitsstudie über die multifunktionale Nutzung von Offshore-Windparks und Offshore-Marikultur im Raum Nordsee. Reports on Polar and marine research. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp 412–252Google Scholar
  27. 27.
    Ryan J (2005) Offshore aquaculture – do we need it, and why is it taking so long? International Salmon Farmers Association (Ireland). Expert workshop on sustainable aquaculture, DG JRC European Commission, Institute for Prospective Technological Studies, 17–18 January 2005. Seville, SpainGoogle Scholar
  28. 28.
    Dahle LA, DePauw N, Joyce J (1991) Offshore aquaculture technology – possibilities and limitations. Aquacult Environ 14:83–84Google Scholar
  29. 29.
    Eleftheriou M (1997) Aqualex: a glossary of aquaculture terms. Wiley-Praxis series in aquaculture and fisheries, Aqualex Multimedia Consortium LtdGoogle Scholar
  30. 30.
    Chopin T (2009) Let’s not move just the fish to the open ocean… an integrated multi-trophic aquaculture approach should not be an afterthought for 2050. Conference paper, the ecology of marine wind farms: perspectives on impact mitigation, siting, and future uses, 8th annual Ronald C. Baird Sea Grant Science Symposium, November 2–4, 2009, Newport, Rhode IslandGoogle Scholar
  31. 31.
    Dena (2007) Renewable energies: Germany’s first test Weld for offshore wind energy. Dena fact sheet. German Energy Agency, BerlinGoogle Scholar
  32. 32.
    Tiedemann A (2003) Windenergieparke im Meer – Perspektiven für den umweltverträglichen Einstieg in eine neue Großtechnologie. In: Lozán J, Rachor E, Reise K, Sündermann J, Westernhagen HV (eds) Warnsignale aus Nordsee & Wattenmeer: Eine aktuelle Umweltbilanz. Wissenschaftliche Auswertungen, Hamburg, pp 142–148Google Scholar
  33. 33.
    BMU/SOW (2007) Offshore wind power deployment in Germany. In: Rehfeldt K, Paschedag U, Bömer J (eds) Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and Stiftung der Deutschen Wirtschaft zur Nutzung und Erforschung der Windenergie auf See/Offshore Wind Energy Foundation (SOW). Scholz-Druck GmbH, Dortmund, pp 31Google Scholar
  34. 34.
    Gierloff-Emden HGR (2002) Wandel der Umwelt der See-und Küstenlandschaft der Nordsee durch Nutzung von Windenergie. Mitteilungen der Österreichischen Geographischen Gesellschaft 144:219–226Google Scholar
  35. 35.
    Dahlke V (2002) Genehmigungsverfahren von Offshore-Windenergieanlagen nach der Seeanlagenverordnung. Natur und Recht 24:472–479Google Scholar
  36. 36.
    BWE (2008) Datenblatt 2007: Datenblatt Windenergie 2007. Bundesverband WindEnergieGoogle Scholar
  37. 37.
    GWEC (2007) Continuing boom in wind energy – 20 GW of new capacity in 2007. Press release 15/02 200. Global Wind Energy CouncilGoogle Scholar
  38. 38.
    BSH (2010) Wind farms. Bundesamt für Seeschifffahrt und Hydrographie. Federal Maritime and Hydrographic Agency, Hamburg/RostockGoogle Scholar
  39. 39.
    Ventus A (2010) Der erste deutsche Offshore-Windpark (first german offshore wind farm). Deutsche Offshore-Testfeld und Infrastruktur. GmbH & Co. KG, OldenburgGoogle Scholar
  40. 40.
    BWE (2007) Offshore Windenergie. BWE Hintergrundpapiere. Bundesverband WindEnergieGoogle Scholar
  41. 41.
    Wirtz KW, Tol RSJ, Hooss KG (2003) Mythos “Offene See”: Nutzungskonflikte im Meeresraum. In: Lozan L et al (eds) Warnsignale aus Nordsee & Wattenmeer. Eine aktuelle Umweltbilanz. Wissenschaftliche Auswertungen, Hamburg, pp 157–160Google Scholar
  42. 42.
    Buck BH, Krause G, Rosenthal H (2004) Multifunctional use, environmental regulations and the prospect of offshore co-management: potential for and constraints to extensive open ocean aquaculture development within wind farms in Germany. Ocean Coast Manage 47:95–122CrossRefGoogle Scholar
  43. 43.
    Jentoft S (2000) Co-managing the coastal zone: is the task too complex? Ocean Coast Manage 43:527–535CrossRefGoogle Scholar
  44. 44.
    Michler-Cieluch T (2009) Co-Management processes in integrated coastal management: the case of integrating marine aquaculture in offshore wind farms. PhD thesis, University of Hamburg, GermanyGoogle Scholar
  45. 45.
    Führböter A, Dette HH (1983) Wasserstände, Wind und Seegang im Seegebiet um Helgoland in den Jahren von 1969 bis 1983. Leichtweiß-Institut für Wasserbau der TU Braunschweig, Bericht Nr, 577Google Scholar
  46. 46.
    Becker G, Dick S, Dippner J (1992) Hydrography of the German Bight. Mar Ecol Prog Ser 91:9–18CrossRefGoogle Scholar
  47. 47.
    Buck BH, Berg-Pollack A, Assheuer J, Zielinski O, Kassen D (2006) Technical realization of extensive aquaculture constructions in offshore wind farms: consideration of the mechanical loads. In: Proceedings of the 25th international conference on offshore mechanics and Arctic engineering, OMAE 2006: presented at the 25th International conference on offshore mechanics and Arctic engineering, 4–9 June 2006, Hamburg, Germany/American Society of Mechanical Engineers, pp 1–7Google Scholar
  48. 48.
    Takayanagi K (1998) Water quality guidelines for aquaculture: an example in Japan. In: Howell WH, Keller BJ, Park PK, McVey JP, Takayanagi K, Uekita Y (eds) Nutrition and technical development of aquaculture. Proceedings of the 26th US–Japan aquaculture symposium, Durham/New Hampshire/USA September 16–18, 1997. UJNR technical report No. 26, Durham, University of New Hampshire Sea Grant Program, pp 247–254Google Scholar
  49. 49.
    BSH (2006) MURSYS – marine environment reporting system information from the North Sea and Baltic Sea. Bundesamt für Seeschifffahrt und Hydrographie (BSH), HamburgGoogle Scholar
  50. 50.
    Stickney RR (1998) Joining forces with industry – open ocean aquaculture. Proceedings of the 3rd annual international conference, May 10–15, Corpus Christi. TAMU-SG-99–103, Corpus Christi, Texas Sea Grant College ProgramGoogle Scholar
  51. 51.
    Bridger CJ, Costa-Pierce BA (2003) Open ocean aquaculture: from research to commercial reality. The World Aquaculture Society, Baton RougeGoogle Scholar
  52. 52.
    Michler-Cieluch T, Kodeih S (2008) Mussel and seaweed cultivation in offshore wind farms: an opinion survey. Coast Manage 36(4):392–411CrossRefGoogle Scholar
  53. 53.
    Buck BH, Buchholz CM (2004) The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol 16:355–368CrossRefGoogle Scholar
  54. 54.
    Buck BH, Walter U, Liebezeit G (2011) Larval occurrence and settlement in the German Bight: A trial to estimate potentials for Mytilus edulis culture in offshore areas, Helgoland Marine Research (in press)Google Scholar
  55. 55.
    BSH (2009) Bundesamt für Seeschifffahrt und Hydrographie – BSH (Federal Maritime and Hydrographic Agency), CONTIS-Geodata. Hamburg/RostockGoogle Scholar
  56. 56.
    Hickman RW (1992) Mussel cultivation. In: Gosling E (ed) The mussel Mytilus: ecology, physiology, genetics and culture, vol 25, Development in aquaculture and fisheries science. Elsevier, Amsterdam, pp 465–510Google Scholar
  57. 57.
    Critchley AT, Ohno M, Largo DB (2006) World seaweed resources. An authoritative reference system. ETI BioInformatics. DVDROMGoogle Scholar
  58. 58.
    Tseng CK (1989) Laminaria mariculture in China. In: Doty MS, Caddy JF, Santelices B (eds) Case studies of seven commercial seaweed resources. FAO Fisheries Technical Paper – 281. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  59. 59.
    Strathmann MF (1987) Reproduction and development of marine invertebrates of the northern Pacific Coast. University of Washington Press, Seattle, pp 670Google Scholar
  60. 60.
    Pulfrich A (1997) Seasonal variation in the occurrence of planktic bivalve larvae in the Schleswig-Holstein Wadden Sea. Helgol Wiss Meer 51:23–39CrossRefGoogle Scholar
  61. 61.
    Walter U, Liebezeit G (2001) Abschlußbericht des Projektes: Nachhaltige Miesmuschel-Anzucht im niedersächsischen Wattenmeer durch die Besiedlung natürlicher und künstlicher Substrate. Forschungszentrum Terramare, pp 1–97Google Scholar
  62. 62.
    Walter U, Liebezeit G (2003) Efficiency of the blue mussel (Mytilus edulis) spat collectors in highly dynamic tidal environments of the Lower Saxonian coast (Southern North Sea). Biomol Eng 20:407–411CrossRefGoogle Scholar
  63. 63.
    Scarratt D (1993) A handbook of northern mussel culture. Island Press, Montague, pp 167Google Scholar
  64. 64.
    Gosling E (2003) Bivalve molluscs: biology, ecology and culture. Blackwell Publishing/MPG Books, Bodmin/Cornwall, pp 443CrossRefGoogle Scholar
  65. 65.
    Brenner M (2009) Site selection criteria and technical requirements for the offshore cultivation of blue mussels (Mytilus edulis L.). PhD thesis, School of Engineering and Science, Jacobs University, Bremen, pp 151Google Scholar
  66. 66.
    Langan R, Horton F (2003) Design, operation and economics of submerged longline mussel culture in the open ocean. Bull Aquacult Assoc Can 103:11–20Google Scholar
  67. 67.
    Neushul M, Harger BWW (1985) Studies of biomass yield from a near-shore macroalgal test farm. J Solar Energy Eng 107:93–96CrossRefGoogle Scholar
  68. 68.
    Neushul M, Benson J, Harger BWW, Charters AC (1992) Macroalgal farming in the sea: water motion and nitrate uptake. J Appl Phycol 4:255–265CrossRefGoogle Scholar
  69. 69.
    Turner R (2001) Offshore mariculture: site evaluation. In: Muir J, Basurco B (eds) Options méditerranéennes – Mediterranean offshore mariculture. Etudes et recherches, Serie B, Numéro 30, Zaragoza, CIHEAM, INO Reproducciones, pp 141–157Google Scholar
  70. 70.
    Pérez OM, Telfer TC, Ross LG (2003) On the calculation of wave climate for offshore cage culture site selection: a case study in Tenerife (Canary Islands). Aquacult Eng 29:1–21CrossRefGoogle Scholar
  71. 71.
    Dalton R (2004) Fishing for trouble. Nature 431:502–504CrossRefGoogle Scholar
  72. 72.
    Naylor R, Burke M (2005) Aquaculture and ocean resources: raising tigers of the sea. Annu Rev Environ Res 30:185–218CrossRefGoogle Scholar
  73. 73.
    Allen JI, Moore MN (2004) Environmental prognostics: is the current use of biomarkers appropriate for environmental risk evaluation. Mar Environ Res 58:227–232CrossRefGoogle Scholar
  74. 74.
    Buck BH, Walter U, Rosenthal H, Neudecker T (2006) The development of mollusc farming in Germany: past, present and future, World Aquaculture 37(2):6–11 & 66–69Google Scholar
  75. 75.
    Buck BH, Thieltges D, Walter U, Nehls G, Rosenthal H (2005) Inshore–offshore comparison of parasite infestation in Mytilus edulis: implications for open ocean aquaculture. J Appl Ichthyol 21:107–113CrossRefGoogle Scholar
  76. 76.
    Brenner M, Buck BH, Koehler A (2007) New concept combines offshore wind farms, mussel cultivation. Global Aquacult Advocate 10:79–81Google Scholar
  77. 77.
    Buck BH, Buchholz CM (2005) Response of offshore cultivated Laminaria saccharina to hydrodynamic forcing in the North Sea. Aquaculture 250:674–691CrossRefGoogle Scholar
  78. 78.
    Manefeld T (2006) Ansiedlungspotential von Miesmuschellarven (Mytilus edulis) an verschiedenen Substraten freihängender Brutkollektoren. Thesis, University of Applied Sciences Bremerhaven, GermanyGoogle Scholar
  79. 79.
    Voss D (2006) Parasitierungsgrad der Miesmuschel (Mytilus edulis) in Abhängigkeit zur Tiefenzonierung und Entfernung zur Küste. Thesis, University of Applied Sciences Bremerhaven, GermanyGoogle Scholar
  80. 80.
    Brenner M, Buck BH (2010) Attachment properties of blue mussel (Mytilus edulis L.) byssus threads on culture-based artificial collector substrates. Aquacult Eng 42:128–139CrossRefGoogle Scholar
  81. 81.
    Zielinski O, Assheuer J, Berg-Pollack A, Buck BH, Geisen M, Henkel R, Kassen D (2006) Assessment of mechanical loads and environmental conditions for extensive aquaculture constructions within offshore wind farms: First results from the AquaLast study site. Proceedings of DEWEK 2006: presented at the DEWEK 2006, 22–23 November 2006, Bremen, Germany, pp 1–4Google Scholar
  82. 82.
    Bard (2010) Offshore wind farms. Bard Engineering GmbH. Emden, GermanyGoogle Scholar
  83. 83.
    OFT (2010) Aquapod – a submergible fish cage. Ocean Farm Technologies, SearsmontGoogle Scholar
  84. 84.
    Ostrom E, Burger J, Field CB, Norgaard RB, Policansky D (1999) Revisiting the commons: local lessons, global challenges. Science 284(4512):278–282CrossRefGoogle Scholar
  85. 85.
    Hardin G (1968) The tragedy of the commons. Science, 162. Reprinted in Dryzek JS, Schlosberg D (1999) Debating the Earth: the environmental politics reader. Oxford University Press, New YorkGoogle Scholar
  86. 86.
    Michler-Cieluch T, Krause G, Buck BH (2009) Reflections on integrating operation and maintenance activities of offshore wind farms and mariculture. Ocean Coast Manage 52(1):57–68CrossRefGoogle Scholar
  87. 87.
    Buck BH, Krause G, Michler-Cieluch T, Brenner M, Buchholz CM, Busch JA, Fisch R, Geisen M, Zielinski O (2008) Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms. Helgol Mar Res 62:269–281CrossRefGoogle Scholar
  88. 88.
    EU Commission (2009) Building a sustainable future for aquaculture. A new impetus for the Strategy for the Sustainable Development of European Aquaculture. The European Parliament and the Council, COM(2009) 162 finalGoogle Scholar
  89. 89.
    McVey JP (1996) Overview of offshore aquaculture. In: Polk M (ed) Open ocean aquaculture. Proceedings of an international conference, May 8–10, Portland, Maine. New Hampshire/Maine Sea Grant College Program, pp 13–18Google Scholar
  90. 90.
    Braginton-Smith B, Messier RH (1997) Design concepts for integration of open ocean aquaculture and Osprey TM Technology. In: Howell WH, Keller BJ, Park PK, McVey JP, Takayanagi K, Uekita Y (eds) Proceedings of the twenty-sixth US–Japan aquaculture symposium, Durham, New Hampshire. UJNR Technical Report No. 26. University of New Hampshire Sea Grant Program, Durham, pp 239–245Google Scholar
  91. 91.
    Bussel van GJW, Zaaijer MB (2007) Reliability, availability and maintenance aspects of large-scale offshore wind farms, a concepts study. In: Proceedings of MAREC 2001. Delft University of Technology, The Netherlands, pp 119–126Google Scholar
  92. 92.
    Musial W, Butterfield S, Ram B (2006) Energy from offshore wind. In: Proceedings of the offshore technology conference (OTC), 1–4 May, Houston, 11 ppGoogle Scholar
  93. 93.
    Michler-Cieluch T, Krause G (2008) Perceived concerns and possible management strategies for governing ‘wind farm–mariculture integration’. Marine Policy 32(6):1013–1022CrossRefGoogle Scholar
  94. 94.
    Carlsson L, Berkes F (2005) Co-management: concepts and methodological implications. J Environ Manage 75:65–76CrossRefGoogle Scholar
  95. 95.
    Cash DW, Moser SC (2000) Linking global and local scales: designing dynamic assessment and management processes. Global Environ Change 10:109–120CrossRefGoogle Scholar
  96. 96.
    Heinelt H (2002) Achieving sustainable and innovative policies through participatory governance in a multi-level context. In: Heinelt H, Getimis P, Kafkalas G, Smith R, Swyngedouw E (eds) Participatory governance in multi-level context. Leske + Budrich, Opladen, pp 17–32Google Scholar
  97. 97.
    EU Commission (2007) An Integrated Maritime Policy for the European Union. Commission Staff Working Document, Accompanying document to the Communication from the Commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the Regions, SEC (2007) 1278Google Scholar
  98. 98.
    Dietz T, Ostrom E, Stern PC (2003) The struggle to govern the commons. Science 302(5652):1907–1912CrossRefGoogle Scholar
  99. 99.
    Steins NA, Edwards VM (1999) Synthesis: platforms for collective action in multiple-use common-pool resources. Agric Hum Values 16(3):309–315CrossRefGoogle Scholar
  100. 100.
    Buck BH, Ebeling M, Michler-Cieluch T (2010) Mussel cultivation as a co-use in offshore wind farms: potential and economic feasibility. Aquacult Econ Manage 14(4):1365–7305Google Scholar
  101. 101.
    Bradbury RH, Seymour RM (2009) Coral reef science and the new commons. Coral Reefs 28:831–837CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bela H. Buck
    • 1
    • 2
    • 3
  • Gesche Krause
    • 4
  1. 1.Biological Sciences – Marine AquacultureAlfred Wegener Institute for Polar and Marine Research (AWI)BremerhavenGermany
  2. 2.Marine Aquaculture for Sustainable FisheriesInstitute for Marine Resources (IMARE)BremerhavenGermany
  3. 3.Maritime Technologies – Applied Marine BiologyUniversity for Applied SciencesBremerhavenGermany
  4. 4.Leibniz Center for Tropical Marine Ecology (ZMT)BremenGermany