Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Alkaline Membrane Fuel Cells

  • Robert C. T. SladeEmail author
  • Jamie P. Kizewski
  • Simon D. Poynton
  • Rong Zeng
  • John R. Varcoe
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_154


The disruptive approach of applying alkaline anion-exchange membranes (AEMs) in alkaline membrane fuel cells (AMFCs) potentially meets several of the challenges facing other approaches to low temperature fuel cells, including the otherwise high catalyst and fuel costs. Thus, the move to alkaline conditions at the electrodes opens the potential use of a range of low cost non-precious-metal catalysts, as opposed to the otherwise necessary use of platinum-group-metal (PGM) based catalysts. Further, it becomes possible to consider hydrogen fuels containing substantial amounts of impurities, whereas an acidic membrane approach (that in proton exchange membrane fuel cell s, PEMFCs) requires high-purity gases and PGM catalysts.


The first entry in the AMFC area was published in 2005 [1], since when activity and interest have continued to increase steeply internationally. Zeng and Varcoe have recently reviewed the developing patent literature [2]. Some researchers have...

This is a preview of subscription content, log in to check access.



We thank the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom for contracts with our team in the area of development of alkaline membrane technology for alkaline membrane fuel cells and associated electrical energy generation: GR/S60709/01, EP/F027524/1, EP/G009929/2 and EP/H025340/1.


Primary Literature

  1. 1.
    Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:189–200CrossRefGoogle Scholar
  2. 2.
    Zeng R, Varcoe JR (2011) Alkaline anion exchange membranes for fuel cells – a patent review. Recent Pat Chem Eng 4:93–115CrossRefGoogle Scholar
  3. 3.
    Schulze M, Gülzow E (2004) Degradation of nickel anodes in alkaline fuel cells. J Power Sources 127:252–263CrossRefGoogle Scholar
  4. 4.
    Wagner N, Schulze M, Gülzow E (2004) Long term investigations of silver cathodes for alkaline fuel cells. J Power Sources 127:264–272CrossRefGoogle Scholar
  5. 5.
    McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrogen Energy 27:507–526CrossRefGoogle Scholar
  6. 6.
    Cifrain M, Kordesch KV (2004) Advances, aging mechanism and lifetime in AFCs with circulating electrolytes. J Power Sources 127:234–242CrossRefGoogle Scholar
  7. 7.
    Gülzow E, Schulze M (2004) Long-term operation of AFC electrodes with CO2 containing gases. J Power Sources 127:243–251CrossRefGoogle Scholar
  8. 8.
    Zeng R, Poynton SD, Kizewski JP, Slade RCT, Varcoe JR (2010) A novel reference electrode for application in alkaline polymer electrolyte membrane fuel cells. Electrochem Commun 12:823–8355CrossRefGoogle Scholar
  9. 9.
    Yanagi H, Fukuta K (2008) Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs). Electrochem Soc Trans 16:257–262Google Scholar
  10. 10.
    Kizewski JP, Mudri NH, Zeng R, Poynton SD, Slade RCT, Varcoe JR (2010) Alkaline electrolytes and reference electrodes for alkaline polymer electrolyte membrane fuel cells. Electrochem Soc Trans 33:27–35Google Scholar
  11. 11.
    Yan JL, Hickner MA (2010) Anion exchange membranes by bromination of benzylmethyl–containing poly(sulfone)s. Macromolecules 43:2349–2356CrossRefGoogle Scholar
  12. 12.
    Adams LA, Poynton SD, Tamain C, Slade RCT, Varcoe JR (2008) A carbon dioxide tolerant aqueous–electrolyte–free anion–exchange membrane alkaline fuel cell. Chem Sus Chem 1:79–81Google Scholar
  13. 13.
    Zagorodni AA, Kotova DL, Selemenev VF (2002) Infrared spectroscopy of ion exchange resins: chemical deterioration of the resins. React Funct Polym 53:157–171CrossRefGoogle Scholar
  14. 14.
    Neagu V, Bunia I, Plesca I (2000) Ionic polymers – VI. Chemical stability of strong base anion exchangers in aggressive media. Polym Degrad Stab 70:463–468CrossRefGoogle Scholar
  15. 15.
    Sata T, Tsujimoto M, Yamaguchi T, Matsusaki K (1996) Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature. J Membr Sci 112:161–170CrossRefGoogle Scholar
  16. 16.
    Soda T, Kaisha K (1972) Anion exchange membranes and their production. GB Patent 1401997Google Scholar
  17. 17.
    Hansen RD, Wheaton RM (1966) Separation of acid from polymers by dialysis with anion exchange membrane. US Patent 3244620Google Scholar
  18. 18.
    Imoto R, Kosaka Y, Shimizu A (1966) Process for manufacturing anion-exchange membranes from a graft copoloymer of SBR and a vinylpyridine reacted with an epoxy resin. US Patent 3258435Google Scholar
  19. 19.
    Hansen RD, Wheaton RM (1966) Separation of acid by dialysis with anion-exchange membranes. US Patent 3272737Google Scholar
  20. 20.
    Süser A (1973) Preparation of anion exchange membranes from cellulose sheets. US Patent 3714010Google Scholar
  21. 21.
    Scott, Rosedale, Moulton, Taylor, Gough (1990) Anion exchange membranes. Patent EP0382439Google Scholar
  22. 22.
    Altmeier P (1995) Stark basische anionenaustauschermembranen und verfahren zu deren herstellung. Patent WO9506083Google Scholar
  23. 23.
    Altmeier P (1998) Strongly alkaline anion exchange membranes and process for producing the same. US Patent 5746917Google Scholar
  24. 24.
    Ehrikhovich KJ, Viktorovna SN, Aleksandrovich FJ, Semenovich GS, Mikhajlovich AJ, Vladimirovna SI, Alekseevna JN, Fedorovich TS (1997) Method for production of anion-exchange membranes having high penetrability to chloride ion. Patent RU2074204Google Scholar
  25. 25.
    Jurevich TD (2007) Method for modifying anion-exchange membranes MA-40. Patent RU2303835Google Scholar
  26. 26.
    Aminabhavi T, Kulkarni PV, Kariduraganavar MY (2009) Ion exchange membranes, methods and processes for production thereof and uses in specific applications. US Patent 7544278Google Scholar
  27. 27.
    Danks TN, Slade RCT, Varcoe JR (2002) Comparison of PVDF– and FEP–based radiation–grafted alkaline anion–exchange membranes for use in low temperature portable DMFCs. J Mater Chem 12:3371–3373CrossRefGoogle Scholar
  28. 28.
    Danks TN, Slade RCT, Varcoe JR (2003) Alkaline anion–exchange radiation–grafted membranes for possible electrochemical application in fuel cells. J Mater Chem 13:712–721CrossRefGoogle Scholar
  29. 29.
    Herman H, Slade RCT, Varcoe JR (2003) The radiation–grafting of vinylbenzyl chloride onto poly(hexafluoropropylene–co–tetrafluoroethylene) films with subsequent conversion to alkaline anion–exchange membranes: optimisation of the experimental conditions and characterization. J Membr Sci 218:147–163CrossRefGoogle Scholar
  30. 30.
    Tzanetakis N, Varcoe J, Slade RS, Scott K (2003) Salt splitting with radiation grafted PVDF anion–exchange membrane. Electrochem Commun 5:115–119CrossRefGoogle Scholar
  31. 31.
    Tzanetakis N, Varcoe JR, Slade RCT, Scott K (2005) Radiation–grafted PVDF anion exchange membrane for salt splitting. Desalination 174:257–265CrossRefGoogle Scholar
  32. 32.
    Slade RCT, Varcoe JR (2005) Investigations of conductivity in FEP–based radiation–grafted alkaline anion–exchange membranes. Solid State Ionics 176:585–597CrossRefGoogle Scholar
  33. 33.
    Varcoe JR, Slade RCT (2006) An electron–beam–grafted ETFE alkaline anion–exchange membrane in metal–cation–free solid–state alkaline fuel cells. Electrochem Commun 8:839–843CrossRefGoogle Scholar
  34. 34.
    Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ, Apperley DC (2007) Poly(ethylene–co–tetrafluoroethylene)–derived radiation–grafted anion–exchange membrane with properties specifically tailored for application in metal–cation–free alkaline polymer electrolyte fuel cells. Chem Mater 19:2686–2693CrossRefGoogle Scholar
  35. 35.
    Chempath S, Einsla BR, Pratt LR, Macomber CS, Boncella JM, Rau JA, Pivovar BS (2008) Mechanism of tetra alkyl ammonium head group degradation in alkaline fuel cell membranes. J Phys Chem C 112:3179–3182CrossRefGoogle Scholar
  36. 36.
    Piana M, Boccia M, Filpi A, Flammia E, Miller HA, Orsini M, Salusti F, Santiccioloi S, Ciardelli F, Pucci A (2010) H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non–platinum group metal cathode catalyst. J Power Sources 195:5875–5881CrossRefGoogle Scholar
  37. 37.
    Li YS, Zhao TS, Liang ZX (2009) Performance of alkaline electrolyte–membrane–based direct ethanol fuel cells. J Power Sources 187:387–392CrossRefGoogle Scholar
  38. 38.
    Kim JH, Kim HK, Hwang KT, Lee JY (2010) Performance of air–breathing direct methanol fuel cell with anion–exchange membrane. Int J Hydrogen Energy 35:768–773CrossRefGoogle Scholar
  39. 39.
    Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31CrossRefGoogle Scholar
  40. 40.
    Li YS, Zhao TS, Liang ZX (2009) Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells. J Power Sources 190:223–229CrossRefGoogle Scholar
  41. 41.
    Fujiwara N, Siroma Z, Yamazaki SI, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185:621–626CrossRefGoogle Scholar
  42. 42.
    Bunazawa H, Yamazaki Y (2008) Influence of anion ionomer content and silver cathode catalyst on the performance of alkaline membrane electrode assemblies (MEAs) for direct methanol fuel cells (DMFCs). J Power Sources 182:48–51CrossRefGoogle Scholar
  43. 43.
    Marx D, Chandra A, Tuckerman ME (2010) Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton. Chem Rev 110:2174–2216CrossRefGoogle Scholar
  44. 44.
    Hibbs MR, Hickner MA, Alam TM, McIntyre SK, Fujimoto CH, Cornelius CJ (2008) Transport properties of hydroxide and proton conducting membranes. Chem Mater 20:2566–2573CrossRefGoogle Scholar
  45. 45.
    Robertson NJ, Kostalik HA IV, Clark TJ, Mutolo PF, Abruna HD, Coates GW (2010) Tunable high performance cross–linked alkaline anion exchange membranes for fuel cell applications. J Am Chem Soc 132:3400–3404CrossRefGoogle Scholar
  46. 46.
    Tanaka M, Koike M, Miyatake K, Watanabe M (2010) Anion conductive aromatic ionomers containing fluorenyl groups. Macromolecules 43:2657–2659CrossRefGoogle Scholar
  47. 47.
    Wang JH, Li SH, Zhang SB (2010) Novel hydroxide–conducting polyelectrolyte composed of a poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890–3896CrossRefGoogle Scholar
  48. 48.
    Guo ML, Fang J, Xu HK, Li W, Lu XH, Lan CH, Li KY (2010) Synthesis and characterization of novel anion exchange membranes based on imidazolium–type ionic liquid for alkaline fuel cells. J Membr Sci 362:97–104CrossRefGoogle Scholar
  49. 49.
    Wang JH, Zhao Z, Gong FX, Li SH, Zhang SB (2009) Synthesis of soluble poly(arylene ether sulfone) ionomers with pendant quaternary ammonium groups for anion exchange membranes. Macromolecules 42:8711–8717CrossRefGoogle Scholar
  50. 50.
    Tripathi BP, Kumar M, Shahi VK (2010) Organic–inorganic hybrid alkaline membranes by epoxide ring opening for direct methanol fuel cell applications. J Membr Sci 360:90–101CrossRefGoogle Scholar
  51. 51.
    Clark TJ, Robertson NJ, Kostalik HA IV, Lobkovsky EB, Mutolo PF, Abruna HD, Coates GW (2009) A ring–opening metathesis polymerization route to alkaline anion exchange membranes: development of hydroxide–conducting thin films from an ammonium–functionalized monomer. J Am Chem Soc 131:12888–12889CrossRefGoogle Scholar
  52. 52.
    Shevchenko VV, Gumennaya MA (2010) Synthesis and properties of anion-exchange membranes for fuel cells. Theor Exp Chem 46:139–152CrossRefGoogle Scholar
  53. 53.
    Varcoe JR, Poynton SD, Slade RCT (2009) In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 5, Advances in electocatalysis, materials, diagnostics and durability. Wiley, Chichester, pp 322–336Google Scholar
  54. 54.
    Zhou J, Unlu M, Vega J, Kohl P (2009) Anionic polysulfoneionomers and membranes containing fluorenyl groups for anionic fuel cells. J Power Sources 190:285–292CrossRefGoogle Scholar
  55. 55.
    Fang J, Shen PK (2006) Quaternizedpoly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells. J Membr Sci 285:317–322CrossRefGoogle Scholar
  56. 56.
    Zeng QH, Liu QL, Broadwell I, Zhu AM, Xiong Y, Tu XP (2010) Anion exchange membranes based onquaternized polystyrene–block–poly(ethylene–ran–butylene)–block–polystyrene for direct methanol alkaline fuel cells. J Membr Sci 349:237–243CrossRefGoogle Scholar
  57. 57.
    Hou HY, Sun GQ, He RH, Wu ZM, Sun BY (2008) Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources 182:95–99CrossRefGoogle Scholar
  58. 58.
    Hou HY, Sun GQ, He RH, Sun BY, Jin W, Liu H, Xin Q (2008) Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell. Int J Hydrogen Energy 33:7172–7176Google Scholar
  59. 59.
    Modestov AD, Tarasevich MR, Leykin AY, Filimonov VY (2009) MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non–platinum electrodes. J Power Sources 188:502–506CrossRefGoogle Scholar
  60. 60.
    Xing B, Savadogo O (2000) Hydrogen oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline–doped polybenzimidazole (PBI). Electrochem Commun 2:697–702CrossRefGoogle Scholar
  61. 61.
    Savadogo O (2004) Emerging membranes for electrochemical systems. Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 127:135–161CrossRefGoogle Scholar
  62. 62.
    Yang CC, Lin CT, Chiu SJ (2008) Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application. Desalination 233:137–146CrossRefGoogle Scholar
  63. 63.
    Yang CC, Chiu SJ, Chien WC, Chiu SS (2010) Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J Power Sources 195:2212–2219CrossRefGoogle Scholar
  64. 64.
    Yang CC, Chiu SJ, Lee KT, Chien WC, Lin CT, Huang CA (2008) Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J Power Sources 184:44–51CrossRefGoogle Scholar
  65. 65.
    Yang CC (2007) Synthesis and characterization of the cross–linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr Sci 288:51–60CrossRefGoogle Scholar
  66. 66.
    Wan Y, Peppley B, Creber KAM, Bui VT, Halliop E (2006) Preliminary evaluation of an alkaline chitosan–based membrane fuel cell. J Power Sources 162:105–113CrossRefGoogle Scholar
  67. 67.
    Wan Y, Creber KAM, Peppley B, Bui VT (2006) Chitosan–based electrolyte composite membranes II. Mechanical properties and ionic conductivity. J Membr Sci 284:331–338CrossRefGoogle Scholar
  68. 68.
    Wan Y, Creber KAM, Peppley B, Bui VT (2006) Chitosan–based solid electrolyte composite membranes I. Preparation and characterization. J Membr Sci 280:666–674CrossRefGoogle Scholar
  69. 69.
    Vassal N, Salmon E, Fauvarque JF (2000) Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH–co–EO). Electrochim Acta 45:1527–1532CrossRefGoogle Scholar
  70. 70.
    Yang CC, Chiu SJ, Chien WC (2006) Development of alkaline direct methanol fuel cells based on cross–linked PVA polymer membranes. J Power Sources 162:21–29CrossRefGoogle Scholar
  71. 71.
    Fauvarque JF (1996) Alkaline solid polymer electrolyte, electrode and electrochemical generator containing such as electrolyte. US Patent 5569559Google Scholar
  72. 72.
    Varcoe JR, Slade RCT, Lam How Yee E (2006) An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion–exchange membranes in fuel cells. Chem Commun :1428–29Google Scholar
  73. 73.
    Lu SF, Pan J, Huang AB, Zhuang L, Lu JT (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci 105:20611–20614CrossRefGoogle Scholar
  74. 74.
    Park JS, Park SH, Yim SD, Yoon YG, Lee WY, Kim CS (2008) Performance of solid alkaline fuel cells employing anion–exchange membranes. J Power Sources 178:620–626CrossRefGoogle Scholar
  75. 75.
    Tang DP, Pan J, Lu SF, Zhuang L, Lu JT (2010) Alkaline polymer electrolyte fuel cells: principle, challenges, and recent progress. Sci China Chem 53:357–364CrossRefGoogle Scholar
  76. 76.
    Gu S, Cai R, Luo T, Chen ZW, Sun MW, Liu Y, He GH, Yan YS (2009) A soluble and highly conductive ionomer for high–performance hydroxide exchange membrane fuel cells. Angew Chem Int Ed 48:6499–6502CrossRefGoogle Scholar
  77. 77.
    Asazawa K, Yamada K, Tanaka H (2007) Fuel cell. Patent EP1843416Google Scholar
  78. 78.
    Tanaka H, Yamada K, Asazawa K (2004) Fuel cell. Patent EP1460705Google Scholar
  79. 79.
    Asazawa K, Yamada K, Tanaka H (2009) Fuel cell. Patent EP2133946Google Scholar
  80. 80.
    Poynton SD, Kizewski JP, Slade RCT, Varcoe JR (2010) Novel electrolyte membranes and non–Pt catalysts for low temperature fuel cells. Solid State Ionics 181:219–222CrossRefGoogle Scholar
  81. 81.
    Ramaswamy N, Mukerjee S (2010) Electrocatalysis of oxygen reduction on non-precious metallic centers at high pH environments. ECS Trans 33:1777–1785CrossRefGoogle Scholar
  82. 82.
    Asazawa K, Yamamoto K, Yamada K, Tanaka H, Matsumura D, Tamura K, Nishihata Y, Atanassov P (2010) XAFS analysis of unpyrolyzedCoPPyC oxygen reduction catalyst for anion-exchange membrane fuel cells (AMFC). Electrochem Soc Trans 33:1751–1755Google Scholar
  83. 83.
    Jeong B, Uhm S, Lee J (2010) Iron-cobalt modified electrospun carbon nanofibers as oxygen reduction catalysts in alkaline fuel cells. Electrochem Soc Trans 33:1757–1767Google Scholar
  84. 84.
    Li XG, Popov BN, Kawahara T, Yanagi H (2010) Recent advances in non-precious metal catalysts for oxygen reduction reaction in fuel cells. Electrochem Soc Trans 33:1769–1776Google Scholar
  85. 85.
    Takeguchi T, Takahashi H, Yamanaka T, Nakamura A, Ueda W (2010) Development of direct-ethanol anion-conducting solid alkaline inorganic fuel cell. Electrochem Soc Trans 33:1847–1851Google Scholar
  86. 86.
    Nakamura A, Takahashi H, Takeguchi T, Yamanaka T, Wang Q, Uchimoto Y, Ueda W (2010) Effect of reduction temperature of Fe-Co-Ni/C catalyst on the solid alkaline fuel cell performance. Electrochem Soc Trans 33:1817–1821Google Scholar
  87. 87.
    Wang Y, Li L, Hu L, Zhuang L, Lu J, Xu B (2003) A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 5:662–666CrossRefGoogle Scholar
  88. 88.
    Yu EH, Krewer U, Scott K (2010) Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3:1499–1528CrossRefGoogle Scholar
  89. 89.
    Scherer GG, Büchi FN, Gupta G (Paul Scherrer Institut, Switzerland) (1997) US Patent 5656386Google Scholar
  90. 90.
    Stone C, Steck A (Ballard Power Systems Inc., Canada) (2002) US Patent 6359019Google Scholar
  91. 91.
    Stone C, Steck A (Ballard Power Systems Inc., Canada) (2000) PCT Patent 01/58576Google Scholar
  92. 92.
    Fauvarque J-F (CNAM Paris and Electricité de France) (1996) US Patent 5569559Google Scholar
  93. 93.
    Yao W, Tsai T, Chang Y-M, Chen M (Reveo Inc., USA) (2001) US Patent 6183914Google Scholar
  94. 94.
    Yao W, Tsai T, Chang Y-M, Chen M (Reveo Inc., USA) (2000) PCT Patent 00/16422Google Scholar
  95. 95.
    Yao W, Tsai T, Chang Y-M, Chen M (Reveo Inc., USA) (2000) Patent EP1116291Google Scholar
  96. 96.
    Jaouen F (ABB AB and Volvo, Sweden) (2002) PCT Patent 02/35633Google Scholar
  97. 97.
    Lu J, Zhuang L (Wuhan University) (2003) Patent CN1402370Google Scholar
  98. 98.
    Divisek J (Forschungszentrum Jülich, Germany) (2001) PCT Patent 01/61776Google Scholar
  99. 99.
    Divisek J (Forschungszentrum Jülich, Germany) (2001) Patent EP1256142Google Scholar
  100. 100.
    Yu J, Yi B, Xing D, Liu F, Shao Z, Fu Y, Zhang H (2003) Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells. Phys Chem Chem Phys 5:611–615CrossRefGoogle Scholar
  101. 101.
    Hübner G, Roduner E (1999) EPR investigation of \( {\text{H}}{{\text{Q}}^\bullet } \) radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J Mater Chem 9:409–418CrossRefGoogle Scholar
  102. 102.
    Panchenko A, Dilger H, Möller E, Sixt T, Roduner E (2004) In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications. J Power Sources 127:325–330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Robert C. T. Slade
    • 1
    Email author
  • Jamie P. Kizewski
    • 1
  • Simon D. Poynton
    • 1
  • Rong Zeng
    • 1
  • John R. Varcoe
    • 1
  1. 1.Department of ChemistryUniversity of SurreyGuildfordUK