Skip to main content

Construction and Demolition Wastes

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Deconstruction:

Systematic dismantling of a structure for reuse and recycling.

Embodied energy:

Energy employed in the manufacture of a product. Sometimes referred to as “emergy.”

Recycled aggregate (RA):

Construction and demolition waste containing a range of different inorganicnonmetallic constituents processed for use as aggregate.

Recycled concrete aggregate (RCA):

aggregate derived from processing end- of-life concrete.

Reclaimed asphalt pavement (RAP):

Also known as recycled asphalt planings, is an asphalt material reclaimed by planing or milling asphalt from road surfaces. The material can be recycled in hot or cold mix asphalt.

Bibliography

  1. Marxsen CS (2001) Potential world garbage and waste carbon sequestration. Environ Sci Policy 4:293–300

    Article  CAS  Google Scholar 

  2. Tam VWY (2009) Comparing the implementation of concrete recycling in the Australian and Japanese construction industries. J Clean Prod 17:688–702

    Article  Google Scholar 

  3. Eurostat statistics database (2010) http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home. Accessed Jan 2010

  4. John VM, Angulo SC, Miranda LFR, Agopyan V, Vasconcellos F (2004) Strategies for innovation in construction demolition waste management in Brazil. CIB World Building Congress, Toronto

    Google Scholar 

  5. Statistics Canada (2004) Waste management industry survey: business and government sectors 2002. Statistics Canada, Ottawa

    Google Scholar 

  6. National Bureau of Statistics of the People’s Republic of China (2006) http://www.allcountries.org/china_statistics/24_5_daily_average_solid_waste_generation.html. Accessed Jan 2010

  7. Pappu A, Saxena M, Asolekar SR (2007) Solid wastes generation in India and their recycling potential in building materials. Build Environ 42:2311–2320

    Article  Google Scholar 

  8. World Health Organization (2005) Malaysia – environmental health country profile. World Health Organization, Geneva

    Google Scholar 

  9. Begum RA, Siwar C, Pereira JJ, Jaafar AH (2006) A benefit-cost analysis on the economic feasibility of construction waste minimisation: the case of Malaysia. Resour Conserv Recy 48:86–98

    Article  Google Scholar 

  10. Ministry for the Environment (New Zealand) (1997) National waste data report. Ministry for the Environment, Wellington, New Zealand

    Google Scholar 

  11. Hsiao TY, Huang YT, Yu YH, Wernick IK (2002) Modelling materials flow of waste concrete from construction and demolition wastes in Taiwan. Resour Policy 28:39–47

    Article  Google Scholar 

  12. Kofoworola OF, Gheewala SH (2009) Estimation of construction waste generation and management in Thailand. Waste Manage 29:731–738

    Article  Google Scholar 

  13. US Environmental Protection Agency/Franklin Associates (1998) Characterization of building-related construction and demolition debris in the United States, US Environmental Protection Agency, Washington

    Google Scholar 

  14. World Bank (2002) Vietnam environment monitor 2002. World Bank, Washington, DC

    Google Scholar 

  15. Lauritzen EK, Hahn NJ (1992) Building waste: generation and recycling. International Solid Waste Association, Vienna

    Google Scholar 

  16. Lowton RM (1997) Construction and the natural environment. Butterworth-Heinemann, Oxford

    Google Scholar 

  17. Addis W, Schouten J (2004) Principles of design for deconstruction to facilitate reuse and recycling. CIRIA, London

    Google Scholar 

  18. Brunner PH, Stämpfli D (1993) Material balance of a construction waste sorting plant. Waste Manage Res 11:27–48

    CAS  Google Scholar 

  19. Schachermayer E, Lahner T, Brunner PH (2000) Assessment of two different separation techniques for building wastes. Waste Manage Res 18:16–24

    CAS  Google Scholar 

  20. Chang N-B, Lin KS, Sun Y-P, Wang HP (2001) Oxidation kinetics of the combustible fraction of construction and demolition wastes. J Environ Qual 30:1392–1401

    Article  CAS  Google Scholar 

  21. Quillen MB, Reed R (2004) Mixed C&D recycling on-line in San Francisco. Biocycle 45:22–25

    CAS  Google Scholar 

  22. Howard N (2000) Sustainable construction – the data. Building Research Establishment, Watford

    Google Scholar 

  23. Sandler K (2003) Analyzing what’s recyclable in C&D debris. Biocycle 44:51–54

    Google Scholar 

  24. Cochran K, Townsend T, Reinhart D, Heck H (2007) Estimation of regional building-related C&D debris generation and composition: case study for Florida. Waste Manage 27:921–931

    Article  Google Scholar 

  25. DSM Environmental Services Incorporated (2008) 2007 Massachusetts construction and demolition debris industry study - final report, DSM Environmental Services Incorporated, Windsor, Vermont

    Google Scholar 

  26. Wilson DG (1990) Recycling of demolition wastes. In: Moavenzadeh F (ed) Concise encyclopedia of building and construction materials. Pergamon, Oxford, pp 517–518

    Google Scholar 

  27. Bianchini G, Marrocchino E, Tassinari R, Vaccaro C (2005) Recycling of construction and demolition waste materials: a chemical-mineralogical appraisal. Waste Manage 25:149–159

    Article  CAS  Google Scholar 

  28. Dhir RK, Halliday JE, Dyer TD, Dick RS (2005) A feasibility study: opportunities for creating medium-value construction projects via demolition waste reconstitution, Technical Report CTU/3705, Department of Trade and Industry, London

    Google Scholar 

  29. Kristinsson J, Hendriks CF, Kowalczyk T, Dorsthorst BJH (2001) Reuse of secondary elements: utopia or reality CIB World Building Congress, Wellington, New Zealand, Paper 230

    Google Scholar 

  30. Rønning A, Vold M, Nereng G (2009) Refurbishment or replacement of buildings – what is best for the climate? Joint Actions on Climate Change, Aalborg

    Google Scholar 

  31. Waste and Resources Action Programme (2010) Aggregain website http://aggregain.wrap.org.uk/. Accessed Dec 2009

  32. Rudy S (1978) New metal recycling system. JOM-J Min Met Mat S 30:21–23

    CAS  Google Scholar 

  33. Rothery K, Mellor S (2007) Crushing and screening. Institute of Quarrying, Nottingham

    Google Scholar 

  34. Xing W, Hendriks C (2006) Decontamination of granular wastes by mining separation techniques. J Clean Prod 14:748–753

    Article  Google Scholar 

  35. Zega CJ, Villagrán-Zaccardi YA, Di Maio AA (2010) Effect of natural coarse aggregate type on the physical and mechanical properties of recycled coarse aggregates. Mater Struct 43:195–202

    Article  Google Scholar 

  36. Poon CS, Shui ZH, Lam L, Fok H, Kou SC (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement Concrete Res 34:31–36

    Article  CAS  Google Scholar 

  37. Dhir RK, Limbachiya MC, Leelawat T (1999) Suitability of recycled concrete aggregate for use in BS 5328 designated mixes. P I Civil Eng-Str B 134:257–274

    Google Scholar 

  38. Domingo-Cabo A, Lázaro C, López-Gayarre F, Serrano-López MA, Serna P, Casaño-Tabares JO (2009) Creep and shrinkage of recycled aggregate concrete. Constr Build Mater 23:2545–2553

    Article  Google Scholar 

  39. Sagoe-Crentsil KK, Brown TT, Taylor AH (2001) Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cement Concrete Res 31:707–712

    Article  CAS  Google Scholar 

  40. Fathifazl G, Razaqpur AG, Isgor OB, Abbas A, Fournier B, Foo S (2009) Flexural performance of steel-reinforced recycled concrete beams. ACI Struct J 106:858–867

    Google Scholar 

  41. Etxeberria M, Marí AR, Vázquez E (2007) Recycled aggregate concrete as structural material. Mater Struct 40:529–541

    Article  Google Scholar 

  42. Alwitt, RS (1976) The aluminium-water system. In: Diggle JW, Vijh AK (eds) Oxides and oxide films, Marcel Dekker, New York, 1976, pp169–254

    Google Scholar 

  43. Dhir RK, Dyer TD, Tang MC (2009) Alkali-silica reaction in concrete containing glass. Mater Struct 42:1451–1462

    Article  CAS  Google Scholar 

  44. McCarthy MJ, Halliday JE, Csetenyi LJ, Dhir RK (2009) Alkali-silica reaction guidance for recycled aggregates in concrete, Report CTU/4909 Waste and Resources Action Programme, Banbury

    Google Scholar 

  45. Wild S (1996) Observations on the use of ground waste clay brick as a cement replacement material. Build Res Inf 24:35–40

    Article  Google Scholar 

  46. Dyer TD, Dhir RK (2001) Chemical reactions of glass cullet used as cement component. J Mater Civil Eng 13:412–417

    Article  CAS  Google Scholar 

  47. Paranavithana S, Mohajerani A (2006) Effects of recycled concrete aggregates on properties of asphalt concrete. Resour Conserv Recy 48:1–12

    Article  Google Scholar 

  48. Mills-Beale J, You Z (2010) The mechanical properties of asphalt mixtures with recycled aggregates. Constr Build Mater 24:230–235

    Article  Google Scholar 

  49. Aljassar AH, Al-Fadala KB, Ali MA (2005) Recycling building demolition waste in hot-mix asphalt concrete: a case study in Kuwait. J Mater Cycles Waste 7:112–115

    Article  Google Scholar 

  50. Doh YS, Amirkhanian SN, Kim KW (2008) Analysis of unbalanced binder oxidation level in recycled asphalt mixture using GPC. Constr Build Mater 22:1253–1260

    Article  Google Scholar 

  51. Romera R, Santamaría A, Peña JJ, Muñoz ME, Barral M, García E, Jañez V (2006) Rheological aspects of the rejuvenation of aged bitumen. Rheol Acta 45:474–478

    Article  CAS  Google Scholar 

  52. Shu X, Huang B, Vukosavljevic D (2008) Laboratory evaluation of fatigue characteristics of recycled asphalt mixture. Constr Build Mater 22:1323–1330

    Article  Google Scholar 

  53. Robinson GR, Menzie WD, Hyun H (2004) Recycling of construction debris as aggregate in the Mid-Atlantic region, USA. Resour Conserv Recy 42:275–294

    Article  Google Scholar 

  54. Highways Agency (2006) Manual of contract documents for highway works – Volume 1 specification for highway works, Series 900 – Road pavements – Bituminous bound materials. Highways Agency, London

    Google Scholar 

  55. Jullien A, Monéron P, Quaranta G, Gaillard D (2006) Air emissions from pavement layers composed of varying rates of reclaimed asphalt. Resour Conserv Recy 47:356–374

    Article  Google Scholar 

  56. Heikkilä PR, Monéron P, Hämmeilä M, Linnainmaa K (2003) Mutagenicity of bitumen and asphalt fumes. Toxicol in Vitro 17:403–412

    Article  CAS  Google Scholar 

  57. Woodside AR, Woodward WDH, Phillips P (2000) Sustainable reuse of highway materials in hot and cold bituminous mixtures. P I Civil Eng-Munic 139:181–186

    Google Scholar 

  58. Jenkins KJ, Molenaar AAA, de Groot JLA, van de Ven MFC (2000) Developments in the uses of foamed bitumen in road pavements. HERON 45:167–176

    Google Scholar 

  59. Sandrolini F, Franzoni E (2001) Waste wash water recycling in ready-mixed concrete plants. Cement Concrete Res 31:485–489

    Article  CAS  Google Scholar 

  60. Rixom R, Mailvaganam N (1999) Chemical admixtures for concrete, 3rd edn. Spon, London

    Book  Google Scholar 

  61. Townsend TG, Jang Y-C, Weber X (2000) Continued research into the characteristics of leachate from construction and demolition waste landfills. Florida Centre for Solid and Hazardous Waste Management, Gainesville

    Google Scholar 

  62. Hewitt EJ, Smith TA (1975) Plant mineral nutrition. The English Universities Press, London

    Google Scholar 

  63. Shainberg I, Sumner ME, Miller WP, Farina MPW, Pavan MA, Fey MV (1989) Use of gypsum on soils: a review. Adv Soil S 9:1–111

    Article  Google Scholar 

  64. Reeve NG, Sumner ME (1972) Amelioration of subsoil acidity in Natal oxisols by leaching of surface-applied amendments. Agrochemophysica 4:1–6

    CAS  Google Scholar 

  65. Miller WP (1987) Infiltration and soil loss of three gypsum-amended ultisols under simulated rainfall. Soil Sci Soc Am J 51:1314–1320

    Article  Google Scholar 

  66. Waste and Resources Action Programme (2007) Recycled gypsum as a soil treatment in potato production. Waste and Resources Action Programme, Banbury, UK

    Google Scholar 

  67. Jang Y, Townsend TG (2001) Sulfate leaching from recovered construction and demolition debris fines. Adv Environ Res 5:203–217

    Article  CAS  Google Scholar 

  68. Musson SE, Xu Q, Townsend TG (2008) Measuring the gypsum content of C&D debris fines. Waste Manage 28:2091–2096

    Article  CAS  Google Scholar 

  69. Waste and Resources Action Programme (2006) International practice in plasterboard recycling: Denmark – Gypsum Recycling International A/S’, Waste and Resources Action Programme, Banbury, UK

    Google Scholar 

  70. Anon. (2003) Stop landfilling drywall. Pollut Eng 35: 24–29

    Google Scholar 

  71. Cochran K (2003) Florida phenomenon. Waste Age 34:24–25

    Google Scholar 

  72. United Nations Industrial Development Organization (1993) Output of a seminar on energy conservation in glass industry. United Nations Industrial Development Organization, Vienna

    Google Scholar 

  73. Tandy BC, Way AGJ (2004) R&D to improve site practices for collection and clean separation of composite (glass) materials in the construction and demolition industry. Waste and Resources Action Programme, Banbury, UK

    Google Scholar 

  74. Huang Y, Bird RN, Heidrich O (2007) A review of the use of recycled solid waste materials in asphalt pavements. Resour Conserv Recy 52:58–73

    Article  Google Scholar 

  75. Jin W, Meyer C, Baxter S (2000) “Glascrete” – concrete with glass aggregate. ACI Struct J 97:208–213

    CAS  Google Scholar 

  76. Dinwoodie JM (2000) Timber: its nature and behaviour. Spon, London

    Book  Google Scholar 

  77. Buckinghamshire Chilterns University College Forest Products Research Centre (2007) Assessment of the mechanical and physical properties of recycled wood products: field tests – final report. Waste and Resources Action Programme, Banbury, UK

    Google Scholar 

  78. Kiely G (1996) Environmental engineering. McGraw-Hill, Boston

    Google Scholar 

  79. McMahon V, Garg A, Aldred D, Hobbs G, Smith R, Tothill IE (2008) Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry. Chemosphere 71:1617–1628

    Article  CAS  Google Scholar 

  80. Beauchemin S, N'dayegamiye A, Laverdiere MR (1992) Phytotoxicity of fresh and composted wood wastes applied as organic amendments in soil. Can J Soil Sci 72:177–181

    Article  Google Scholar 

  81. McMahon V, Garg A, Aldred D, Hobbs G, Smith R, Tothill IE (2009) Evaluation of the potential of applying composting/bioremediation techniques to wastes generated within the construction industry. Waste Manage 29:186–196

    Article  CAS  Google Scholar 

  82. Schut JH (2003) Entrepreneur puts mixed-polymer recycling on track to success. Plast Technol 49:128

    Google Scholar 

  83. Scott G (1999) Polymers and the environment. Royal Society of Chemistry, Cambridge

    Google Scholar 

  84. Tall S, Albertsson A-C, Karlsson S (1998) Recycling of mixed plastic fractions: mechanical properties of multicomponent extruded polyolefin blends using response surface methodology. J Appl Polym Sci 70:2381–2390

    Article  CAS  Google Scholar 

  85. Fortelný I, Michálková D, Kruliš Z (2004) An efficient method of material recycling of municipal plastic waste. Polym Degrad Stabil 85:975–979

    Article  CAS  Google Scholar 

  86. Kabdi S-A, Belhaneche-Bensemra N (2008) Compatibilization of regenerated low density polyethylene/poly(vinyl chloride) blends. J Appl Polym Sci 110:1750–1755

    Article  CAS  Google Scholar 

  87. Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrostat 62:277–290

    Article  CAS  Google Scholar 

  88. Cavalieri F, Padella F (2002) Development of composite materials by mechanochemical treatment of post-consumer plastic waste. Waste Manage 22:913–916

    Article  CAS  Google Scholar 

  89. Jonna S, Lyons J (2005) Processing and properties of cryogenically milled post-consumer mixed plastic waste. Polym Test 24:428–434

    Article  CAS  Google Scholar 

  90. Nesarikar AR, Carr SH, Khait K, Mirabella FM (1997) Self-compatibilization of polymer blends via novel solid-state shear extrusion pulverization. J Appl Polym Sci 63:1179–1187

    Article  CAS  Google Scholar 

  91. Dodbiba G, Sadaki J, Okaya K, Shibayama A, Fujita T (2005) The use of air tabling and triboelectric separation for separating a mixture of three plastics. Miner Eng 18:1350–1360

    Article  CAS  Google Scholar 

  92. Gent MR, Menendez M, Toraño J, Isidro D, Torno S (2009) Cylinder cyclone (LARCODEMS) density media separation of plastic wastes. Waste Manage 29:1819–1827

    Article  CAS  Google Scholar 

  93. Burat F, Guney A, Kangal MO (2009) Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method. Waste Manage 29:1807–1813

    Article  CAS  Google Scholar 

  94. Pascoe RD (2005) The use of selective depressants for the separation of ABS and HIPS by froth flotation. Miner Eng 18:233–237

    Article  CAS  Google Scholar 

  95. Park C-H, Jeon H-S, Yu H-S, Han O-H, Park J-K (2008) Application of electrostatic separation to the recycling of plastic wastes: separation of PVC, PET, and ABS. Environ Sci Technol 42:249–255

    Article  CAS  Google Scholar 

  96. Yarahmadi N, Jakubowicz I, Gevert T (2001) Effects of repeated extrusion on the properties and durability of rigid PVC scrap. Polym Degrad Stabil 73:93–99

    Article  CAS  Google Scholar 

  97. Arnold JC, Maund B (1999) The properties of recycled PVC bottle compounds. 2: reprocessing stability. Polym Eng Sci 39:1242–1250

    Article  CAS  Google Scholar 

  98. Braun D (2002) Recycling of PVC. Prog Polym Sci 27:2171–2195

    Article  CAS  Google Scholar 

  99. Kou SC, Lee G, Poon CS, Lai WL (2009) Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Manage 29:621–628

    Article  CAS  Google Scholar 

  100. Zoorob SE, Suparma LB (2000) Laboratory design and investigation of the properties of continuously graded asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt). Cement Concrete Comp 22:233–242

    Article  CAS  Google Scholar 

  101. Ergun M, Iyinam S, Iyinam AF (2005) Flexural behaviour of waste plastic added asphalt concrete mixture. In: Proceedings of the international symposium on pavement recycling, Sao Paulo, Brazil

    Google Scholar 

  102. Fang C, Zhou S, Zhang M, Zhao S (2009) Modification of waterproofing asphalt by PVC packaging waste. J Vinyl Addit Techn 15:229–233

    Article  CAS  Google Scholar 

  103. Johnson J, Harper EM, Lifset R, Graedel TE (2007) Dining at the periodic table: metals concentrations as they relate to recycling. Environ Sci Technol 41:1759–1765

    Article  CAS  Google Scholar 

  104. Spartari S, Bertram M, Fuse K, Graedel TE, Shelov E (2003) The contemporary European zinc cycle: 1-year stocks and flows. Resour Conserv Recy 39:137–160

    Article  Google Scholar 

  105. Hammond G, Jones C (2008) Inventory of carbon and energy (ICE). University of Bath, Bath

    Google Scholar 

  106. Throne JL, Griskey RG (1972) Heating values and thermochemical properties of plastics. Mod Plast 49:96–100

    CAS  Google Scholar 

  107. Ince PJ (1979) How to estimate recoverable heat energy in wood or bark fuels. Forest Products Laboratory Report FPL 29, US Department of Agriculture Forest Service, Madison, Wisconsin

    Google Scholar 

  108. Delgado C, Barruetabeña L, Salas O (2007) Assessment of the environmental advantages and drawbacks of existing and emerging polymers recovery processes. European Commission Joint Research Centre, Institute for Prospective Technological Studies, Seville

    Google Scholar 

  109. Wikstrom E, Lofvenius G, Rappe C, Marklund S (1996) Influence of level and form of chlorine on the formation of chlorinated dioxins, dibenzofurans, and benzenes during combustion of an artificial fuel in a laboratory reactor. Environ Sci Technol 30:1637–1644

    Article  Google Scholar 

  110. Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel. A suitable method for plastic waste management and manufacture of value added products – a world perspective. Renew Sust Energ Rev 14:233–248

    Article  CAS  Google Scholar 

  111. Williams PT, Williams EA (1999) Interaction of plastics in mixed-plastics pyrolysis. Energ Fuel 13:188–196

    Article  CAS  Google Scholar 

  112. Paradela F, Pinto F, Gulyurtlu I, Cabrita I, Lapa N (2009) Study of the co-pyrolysis of biomass and plastic wastes. Clean Technol Envir 11:115–122

    Article  CAS  Google Scholar 

  113. Bhattacharya P, Steele PH, Hassan EBM, Mitchell B, Ingram L, Pittman CU (2009) Wood/plastic copyrolysis in an auger reactor: chemical and physical analysis of the products. Fuel 88:1251–1260

    Article  CAS  Google Scholar 

  114. Matsuzawa Y, Ayabe M, Nishino J (2001) Acceleration of cellulose co-pyrolysis with polymer. Polym Degrad Stabil 71:435–444

    Article  Google Scholar 

  115. Ryu C, Sharifi VN, Swithenbank J (2007) Thermal waste treatment for sustainable energy. P I Civil Eng–Eng Sustain 160:133–140

    Article  Google Scholar 

  116. Hwang IH, Matsuto T, Tanaka N, Sasaki Y, Tanaami K (2007) Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling. Waste Manage 27:1155–1166

    Article  CAS  Google Scholar 

  117. Pinto F, Franco C, André RN, Tavares C, Dias M, Gulyurtlu I, Cabrita I (2003) Effect of experimental conditions on co-gasification of coal biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel 82:1967–1976

    Article  CAS  Google Scholar 

  118. Slapak MJP, van Kasteren JMN, Drinkenburg AAH (2000) Design of a process for steam gasification of PVC waste. Resour Conserv Recy 30:81–93

    Article  Google Scholar 

  119. Jayasekara R, Harding I, Bowater I, Lonergan G (2005) Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Environ 13:231–251

    Article  CAS  Google Scholar 

  120. Totzke D (2009) Tapping the potential of codigestion. Biocycle 50:32–35

    Google Scholar 

  121. Selling R, Håkansson T, Björnsson L (2008) Two-stage anaerobic digestion enables heavy metal removal. Water Sci Technol 57:553–558

    Article  CAS  Google Scholar 

  122. Haynes R, Savage A (2007) Assessment of the health impacts of particulates from the redevelopment of Kings Cross. Environ Monit Assess 130:47–56

    Article  CAS  Google Scholar 

  123. Dorevitch S, Demirtas H, Perksy VW, Erdal S, Conroy L, Schoonover T, Scheff PA (2006) Demolition of high-rise public housing increases particulate matter air pollution in communities of high-risk asthmatics. J Air Waste Manage 56:1022–1032

    Article  CAS  Google Scholar 

  124. Bouza E, Peláez T, Pérez-Molina J, Marín M, Alcalá L, Padilla B, Muñoz P (2002) Aspergillus study team, Demolition of a hospital building by controlled explosion: the impact on filamentous fungal load in internal and external air. J Hosp Infect 52:234–242

    Article  CAS  Google Scholar 

  125. Quillen MB, Reed R (2004) Mixed C&D recycling on-line in San Francisco. Biocycle 45:22–25

    CAS  Google Scholar 

  126. Construction Industry Publications (2009) Construction health and safety manual – section 24 – asbestos. Construction Industry, Bedford

    Google Scholar 

  127. Perkins RA, Hargesheimer J, Fourie W (2007) Asbestos release from whole-building demolition of buildings with asbestos-containing material. J Occup Environ Hyg 4:889–894

    Article  CAS  Google Scholar 

  128. Townsend TG, Jang Y, Thurn LG (1999) Simulation of construction and demolition waste leachate. J Environ Eng 125:1071–1081

    Article  CAS  Google Scholar 

  129. Weber WJ, Jang Y-C, Townsend TG, Laux S (2002) Leachate from land disposed residential construction waste. J Environ Eng 128:237–245

    Article  CAS  Google Scholar 

  130. US Environmental Protection Agency/ICF Incorporated (1995) Construction and demolition waste landfills, US Environmental Protection Agency, Washington, USA

    Google Scholar 

  131. Agency for Toxic Substances and Disease Registry (2007) 2007 CERCLA priority list of hazardous substances that will be the subject of toxicological profiles and support document. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  132. Song J, Dubey B, Jang Y-C, Townsend T, Solo-Gabriele H (2006) Implication of chromium speciation on disposal of discarded CCA-treated wood. J Hazard Mat B128:280–288

    Article  CAS  Google Scholar 

  133. Katz S, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J App Toxicol 13:217–224

    Article  CAS  Google Scholar 

  134. Cooper PA (1991) Leaching of CCA from treated wood: pH effects. Forest Prod J 41:30–32

    CAS  Google Scholar 

  135. Ferguson DW, Male JW (1980) The water pollution potential from demolition waste disposal. J Environ Sci Heal A 15:549–559

    Google Scholar 

  136. Wadanambi L, Dubey B, Townsend T (2008) The leaching of lead from lead-based paint in landfill environments. J Hazard Mat 157:194–200

    Article  CAS  Google Scholar 

  137. Jang Y-C, Townsend TG (2001) Occurrence of organic pollutants in recovered soil fines from construction and demolition waste. Waste Manage 21:703–715

    Article  CAS  Google Scholar 

  138. International Organization for Standardization (2006) ISO 14040:2006 - Environmental management – life-cycle assessment – Principles and framework. International Organization for Standardization, Geneva

    Google Scholar 

  139. Thormark C (2001) Conservation of energy and natural resources by recycling building waste. Resour Conserv Recy 33:113–130

    Article  Google Scholar 

  140. Winter MG (2002) A conceptual framework for the recycling of aggregates and other wastes. P I Civil Eng-Munic 151:177–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Dyer, T. (2012). Construction and Demolition Wastes. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_118

Download citation

Publish with us

Policies and ethics