Emerging Technologies in the Treatment of Cancer

Reference work entry


Emerging technologies in interventional oncology span a broad range of topics. In the broadest sense, most have a common underlying theme converging around energy and tissues. This chapter covers new areas related to energy deposition, guidance, monitoring, new sources of energy, and ways to alter cellular and tissue responses to these interventions to improve outcomes for patients. In addition, upcoming developments in new embolic agents are highlighted from both an imaging perspective and a pharmacokinetic point of view.


Newcastle Disease Virus Uterine Fibroid Arsenic Trioxide Uterine Fibroid Embolization Interventional Oncology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A number of physicians, scientists, and engineers contributed insight and discussion in the preparation of this chapter. In particular, the author would like to thank the following: Dr. Fil Banovac, Dr. Karun Sharma, Dr. Matt Dreher, Dr. Dan Sze, Dr. Jafar Golzarian, Dr. Muneeb Ahmed, Dr. Lihui Weng, Dr. Emad Ebbini, Dr. Rob Griffin, Dr. Chris Brace, Dr. Dustin Kruse, and Dr. John Bischof.


  1. 1.
    Solomon SB, White Jr P, Acker DE, Strandberg J, Venbrux AC. Real-time bronchoscope tip localization enables three-dimensional CT image guidance for transbronchial needle aspiration in swine. Chest. 1998;114(5):1405–10.CrossRefPubMedGoogle Scholar
  2. 2.
    Solomon SB, Magee C, Acker DE, Venbrux AC. TIPS placement in swine, guided by electromagnetic real-time needle tip localization displayed on previously acquired 3-D CT. Cardiovasc Intervent Radiol. 1999;22(5):411–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Solomon SB, Magee CA, Acker DE, Venbrux AC. Experimental nonfluoroscopic placement of inferior vena cava filters: use of an electromagnetic navigation system with previous CT data. J Vasc Interv Radiol. 1999;10(1):92–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Banovac F, Tang J, Xu S, et al. Precision targeting of liver lesions using a novel electromagnetic navigation device in physiologic phantom and swine. Med Phys. 2005;32(8):2698–705.CrossRefPubMedGoogle Scholar
  5. 5.
    Banovac F, Cheng P, Campos-Nanez E, et al. Radiofrequency ablation of lung tumors in swine assisted by a navigation device with preprocedural volumetric planning. J Vasc Interv Radiol. 2010;21(1):122–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Krucker J, Xu S, Glossop N, et al. Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol. 2007;18(9):1141–50.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fischer K, Gedroyc W, Jolesz FA. Focused ultrasound as a local therapy for liver cancer. Cancer J. 2010;16(2):118–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Illing RO, Kennedy JE, Wu F, et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer. 2005;93(8):890–5.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wu F, Wang ZB, Chen WZ, et al. Advanced hepatocellular carcinoma: treatment with high-intensity focused ultrasound ablation combined with transcatheter arterial embolization. Radiology. 2005;235(2):659–67.CrossRefPubMedGoogle Scholar
  10. 10.
    Orgera G, Curigliano G, Krokidis M, et al. High-intensity focused ultrasound effect in breast cancer nodal metastasis. Cardiovasc Intervent Radiol. 2010;33(2):447–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Orgera G, Krokidis M, Monfardini L, et al. High intensity focused ultrasound ablation of pancreatic neuroendocrine tumours: report of two cases. Cardiovasc Intervent Radiol. 2010;34:419–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Jeong JS, Chang JH, Shung KK. Ultrasound transducer and system for real-time simultaneous therapy and diagnosis for noninvasive surgery of prostate tissue. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(9):1913–22.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jeong JS, Cannata JM, Shung KK. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer. Phys Med Biol. 2010;55(7):1889–902.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Owen NR, Chapelon JY, Bouchoux G, Berriet R, Fleury G, Lafon C. Dual-mode transducers for ultrasound imaging and thermal therapy. Ultrasonics. 2010;50(2):216–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Ballard JR, Casper AJ, Ebbini ES. Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:137–40.PubMedGoogle Scholar
  16. 16.
    Ebbini ES, Yao H, Shrestha A. Dual-mode ultrasound phased arrays for image-guided surgery. Ultrason Imaging. 2006;28(2):65–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Deng ZS, Liu J. Minimally invasive thermotherapy method for tumor treatment based on an exothermic chemical reaction. Minim Invasive Ther Allied Technol. 2007;16(1):1–6.Google Scholar
  18. 18.
    Farnam JL, Smith BC, Johnson BR, et al. Thermochemical ablation in an ex-vivo porcine liver model using acetic acid and sodium hydroxide: proof of concept. J Vasc Interv Radiol. 2010;21:1573–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Rao W, Liu J. Tumor thermal ablation therapy using alkali metals as powerful self-heating seeds. Minim Invasive Ther Allied Technol. 2008;17(1):43–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Rao W, Liu J, Zhou YX, Yang Y, Zhang H. Anti-tumor effect of sodium-induced thermochemical ablation therapy. Int J Hyperthermia. 2008;24(8):675–81.CrossRefPubMedGoogle Scholar
  21. 21.
    Rao W, Liu J. Injectable liquid alkali alloy based-tumor thermal ablation therapy. Minim Invasive Ther Allied Technol. 2009;18(1):30–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Cressman EN, Tseng HJ, Talaie R, Henderson BM. A new heat source for thermochemical ablation based on redox chemistry: initial studies using permanganate. Int J Hyperthermia. 2010;26(4):327–37.CrossRefPubMedGoogle Scholar
  23. 23.
    Shafirstein G, Kaufmann Y, Hennings L, et al. Conductive interstitial thermal therapy (CITT) inhibits recurrence and metastasis in rabbit VX2 carcinoma model. Int J Hyperthermia. 2009;25(6):446–54.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shafirstein G, Novak P, Moros EG, et al. Conductive interstitial thermal therapy device for surgical margin ablation: in vivo verification of a theoretical model. Int J Hyperthermia. 2007;23(6):477–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Cherukuri P, Curley SA. Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Methods Mol Biol. 2010;624:359–73.CrossRefPubMedGoogle Scholar
  26. 26.
    Curley SA, Cherukuri P, Briggs K, et al. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J Exp Ther Oncol. 2008;7(4):313–26.PubMedGoogle Scholar
  27. 27.
    Gannon CJ, Cherukuri P, Yakobson BI, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer. 2007;110(12):2654–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Kawashita M, Domi S, Saito Y, et al. In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field. J Mater Sci Mater Med. 2008;19(5):1897–903.CrossRefPubMedGoogle Scholar
  29. 29.
    Fortin JP, Gazeau F, Wilhelm C. Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. Eur Biophys J. 2008;37(2):223–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Wilhelm C, Fortin JP, Gazeau F. Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles. J Nanosci Nanotechnol. 2007;7(8):2933–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Jing Y, He S, Kline T, Xu Y, Wang JP. High-magnetic-moment nanoparticles for biomedicine. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4483–6.PubMedGoogle Scholar
  32. 32.
    Dennis CL, Jackson AJ, Borchers JA, et al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 2009;20(39):395103.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Moran CH, Wainerdi SM, Cherukuri TK, et al. Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Res. 2009;2(5):400–5.CrossRefGoogle Scholar
  34. 34.
    James JR, Gao Y, Soon VC, Topper SM, Babsky A, Bansal N. Controlled radio-frequency hyperthermia using an MR scanner and simultaneous monitoring of temperature and therapy response by (1)H, (23)Na and (31)P magnetic resonance spectroscopy in subcutaneously implanted 9L-gliosarcoma. Int J Hyperthermia. 2010;26(1):79–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Ko YH, Smith BL, Wang Y, et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun. 2004;324(1):269–75.CrossRefPubMedGoogle Scholar
  36. 36.
    Mathupala SP, Ko YH, Pedersen PL. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta. 2010;1797:1225–30.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin Cancer Biol. 2009;19(1):17–24.CrossRefPubMedGoogle Scholar
  38. 38.
    Nour SG, Goldberg SN, Wacker FK, et al. MR monitoring of NaCl-enhanced radiofrequency ablations: observations on low- and high-field-strength MR images with pathologic correlation. Radiology. 2010;254(2):449–59.CrossRefPubMedGoogle Scholar
  39. 39.
    Wood MA, Goldberg SM, Parvez B, et al. Effect of electrode orientation on lesion sizes produced by irrigated radiofrequency ablation catheters. J Cardiovasc Electrophysiol. 2009;20:1262–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 1978;202(4374):1290–3.CrossRefPubMedGoogle Scholar
  41. 41.
    Solazzo SA, Ahmed M, Schor-Bardach R, et al. Liposomal doxorubicin increases radiofrequency ablation-induced tumor destruction by increasing cellular oxidative and nitrative stress and accelerating apoptotic pathways. Radiology. 2010;255(1):62–74.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Monsky WL, Kruskal JB, Lukyanov AN, et al. Radio-frequency ablation increases intratumoral liposomal doxorubicin accumulation in a rat breast tumor model 1. Radiology. 2002;224(3):823–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Head HW, Dodd 3rd GD, Bao A, et al. Combination radiofrequency ablation and intravenous radiolabeled liposomal Doxorubicin: imaging and quantification of increased drug delivery to tumors. Radiology. 2010;255(2):405–14.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang Y, Hong J, Cressman EN, Arriaga EA. Direct sampling from human liver tissue cross sections for electrophoretic analysis of doxorubicin. Anal Chem. 2009;81(9):3321–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Namur J, Wassef M, Millot JM, Lewis AL, Manfait M, Laurent A. Drug-eluting beads for liver embolization: concentration of doxorubicin in tissue and in beads in a pig model. J Vasc Interv Radiol. 2010;21(2):259–67.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang S, Bromley E, Xu L, Chen JC, Keltner L. Talaporfin sodium. Expert Opin Pharmacother. 2010;11(1):133–40.CrossRefPubMedGoogle Scholar
  47. 47.
    Kujundzic M, Vogl TJ, Stimac D, et al. A Phase II safety and effect on time to tumor progression study of intratumoral light infusion technology using talaporfin sodium in patients with metastatic colorectal cancer. J Surg Oncol. 2007;96(6):518–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Chen J, Keltner L, Christophersen J, et al. New technology for deep light distribution in tissue for phototherapy. Cancer J. 2002;8(2):154–63.CrossRefPubMedGoogle Scholar
  49. 49.
    Siemann DW, Horsman MR. Vascular targeted therapies in oncology. Cell Tissue Res. 2009;335(1):241–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Siemann DW, Shi W. Efficacy of combined antiangiogenic and vascular disrupting agents in treatment of solid tumors. Int J Radiat Oncol Biol Phys. 2004;60(4):1233–40.CrossRefPubMedGoogle Scholar
  51. 51.
    Siemann DW, Bibby MC, Dark GG, et al. Differentiation and definition of vascular-targeted therapies. Clin Cancer Res. 2005;11(2 Pt 1):416–20.PubMedGoogle Scholar
  52. 52.
    Weinberg BD, Krupka TM, Haaga JR, Exner AA. Combination of sensitizing pretreatment and radiofrequency tumor ablation: evaluation in rat model. Radiology. 2008;246(3):796.CrossRefPubMedGoogle Scholar
  53. 53.
    Heberlein WE, Borrelli MJ, Wu J, Bernock LJ. Localized injection of a tissue permeabilizer reduces the threshold temperature required to ablate solid tissue. J Vasc Interv Radiol. 2010;21(2):S36.CrossRefGoogle Scholar
  54. 54.
    Yang W, Ahmed M, Tasawwar B, Levchenko T, Sawant RR, Collins M, Signoretti S, Torchilin V, Goldberg SN. Radiofrequency ablation combined with liposomal quercetin to increase tumour destruction by modulation of heat shock protein production in a small animal model. Int J Hyperth. 2011; 27(6):527–538.CrossRefGoogle Scholar
  55. 55.
    Granado-Serrano AB, Martin MA, Bravo L, Goya L, Ramos S. Quercetin modulates NF-kappa B and AP-1/JNK pathways to induce cell death in human hepatoma cells. Nutr Cancer. 2010;62(3):390–401.CrossRefPubMedGoogle Scholar
  56. 56.
    Goel R, Swanlund D, Coad J, Paciotti GF, Bischof JC. TNF-alpha-based accentuation in cryoinjury–dose, delivery, and response. Mol Cancer Ther. 2007;6(7):2039–47.CrossRefPubMedGoogle Scholar
  57. 57.
    Liu D, Ebbini ES. Real-time 2-D temperature imaging using ultrasound. IEEE Trans Biomed Eng. 2010;57(1):12–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Anand A, Kaczkowski PJ. Noninvasive determination of in situ heating rate using kHz acoustic emissions and focused ultrasound. Ultrasound Med Biol. 2009;35(10):1662–71.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ponce AM, Viglianti BL, Yu D, et al. Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst. 2007;99(1):53–63.CrossRefPubMedGoogle Scholar
  60. 60.
    Viglianti BL, Abraham SA, Michelich CR, et al. In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn Reson Med. 2004;51(6):1153–62.CrossRefPubMedGoogle Scholar
  61. 61.
    de Smet M, Langereis S, van den Bosch S, Grull H. Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. J Control Release. 2010;143(1):120–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Brace CL, Mistretta CA, Hinshaw JL, Lee Jr FT. Periodic contrast-enhanced computed tomography for thermal ablation monitoring: a feasibility study. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4299–302.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Sharma KV, Dreher MR, Tang Y, et al. Development of “imageable” beads for transcatheter embolotherapy. J Vasc Interv Radiol. 2010;21(6):865–76.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Jenks N, Myers R, Greiner SM, et al. Safety studies on intrahepatic or intratumoral injection of oncolytic vesicular stomatitis virus expressing interferon-beta in rodents and nonhuman primates. Hum Gene Ther. 2010;21(4):451–62.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Chang JF, Chen PJ, Sze DY, et al. Oncolytic virotherapy for advanced liver tumours. J Cell Mol Med. 2009;13(7):1238–47.CrossRefPubMedGoogle Scholar
  66. 66.
    Altomonte J, Marozin S, Schmid RM, Ebert O. Engineered newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma. Mol Ther. 2010;18(2):275–84.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of Minnesota Medical CenterMinneapolisUSA

Personalised recommendations