Focal Therapy of Prostate Cancer by Radiofrequency and Photodynamic Therapy

  • Bob Djavan
  • Herbert Lepor
  • Reza Zare
  • Seyed Saeid Dianat
Reference work entry


Prostate cancer is still the most common noncutaneous cancer in male. It is estimated that 217,730 new cases of prostate cancer will be diagnosed, and 32,050 prostate cancer-related deaths will occur in the United States in 2010. Focal therapeutic techniques offer a middle way between the radical surgery and active surveillance in the management of prostate cancer. Two major developments in this field are improvements in tumor localization techniques and new ablative therapies such as high-intensity focused ultrasound (HIFU), cryosurgery, photodynamic therapy, photothermal therapy, and radiofrequency interstitial tumor ablation (RITA) enabling a precise and accurate ablation of tumor foci. RITA therapy is a focal therapeutic modality in which low-level radiofrequency energy is precisely delivered to the target tissue to heat and ablate the malignant tissue. RF energy generates temperatures of around 100 °C and induces irreversible cellular destruction by coagulative necrosis. This chapter reviews the concept of focal therapy for prostate cancer, image-guided biopsy, and the role of imaging before focal therapy and more specifically considers the equipments, procedural technique, and the efficacy of radiofrequency ablation for local prostate cancer. Finally, we briefly reviewed the contribution of photodynamic therapy for the treatment of prostate cancer.


Prostate Cancer Radical Prostatectomy Gleason Score Light Dose Focal Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    National Cancer Institute, prostate cancer. 2010. Accessed 22 July 2010.
  2. 2.
    Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin. 2003;53(1):5–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Hu JC, Gu X, Lipsitz SR, et al. Comparative effectiveness of minimally invasive vs open radical prostatectomy. JAMA. 2009;302(14):1557–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Cahlon O, Hunt M, Zelefsky MJ. Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin Radiat Oncol. 2008;18(1):48–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Sharma NL, Shah NC, Neal DE. Robotic-assisted laparoscopic prostatectomy. Br J Cancer. 2009;101(9):1491–6.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Shipley WU, Thames HD, Sandler HM, et al. Radiation therapy for clinically localized prostate cancer: a multi-institutional pooled analysis. JAMA. 1999;281(17):1598–604.PubMedCrossRefGoogle Scholar
  7. 7.
    Rogers E, Ohori M, Kassabian VS, Wheeler TM, Scardino PT. Salvage radical prostatectomy: outcome measured by serum prostate specific antigen levels. J Urol. 1995;153(1):104–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Pisters LL. Salvage radical prostatectomy: refinement of an effective procedure. Semin Radiat Oncol. 2003;13(2):166–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Izawa JI, Morganstern N, Chan DM, Levy LB, Scott SM, Pisters LL. Incomplete glandular ablation after salvage cryotherapy for recurrent prostate cancer after radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56(2):468–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Pisters LL, von Eschenbach AC, Scott SM, et al. The efficacy and complications of salvage cryotherapy of the prostate. J Urol. 1997;157(3):921–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Pisters LL, Rewcastle JC, Donnelly BJ, Lugnani FM, Katz AE, Jones JS. Salvage prostate cryoablation: initial results from the cryo on-line data registry. J Urol. 2008;180(2):559–63. discussion 563–554.PubMedCrossRefGoogle Scholar
  12. 12.
    Grado GL, Collins JM, Kriegshauser JS, et al. Salvage brachytherapy for localized prostate cancer after radiotherapy failure. Urology. 1999;53(1):2–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Beyer DC. Brachytherapy for recurrent prostate cancer after radiation therapy. Semin Radiat Oncol. 2003;13(2):158–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Lecornet E, Ahmed HU, Moore CM, Emberton M. Conceptual basis for focal therapy in prostate cancer. J Endourol. 2010;24(5):811–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Mouraviev V, Mayes JM, Madden JF, Sun L, Polascik TJ. Analysis of laterality and percentage of tumor involvement in 1386 prostatectomized specimens for selection of unilateral focal cryotherapy. Technol Cancer Res Treat. 2007;6(2):91–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Jayram G, Eggener SE. Patient selection for focal therapy of localized prostate cancer. Curr Opin Urol. 2009;19(3):268–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Mouraviev V, Mayes JM, Sun L, Madden JF, Moul JW, Polascik TJ. Prostate cancer laterality as a rationale of focal ablative therapy for the treatment of clinically localized prostate cancer. Cancer. 2007;110(4):906–10.PubMedCrossRefGoogle Scholar
  18. 18.
    De Laet K, de la Taille A, Ploussard G, et al. Predicting tumour location in radical prostatectomy specimens: same-patient comparisons of 21-sample versus sextant biopsy. BJU Int. 2009;104(5):616–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Polascik TJ, Mouraviev V. Focal therapy for prostate cancer is a reasonable treatment option in properly selected patients. Urology. 2009;74(4):726–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Sartor AO, Hricak H, Wheeler TM, et al. Evaluating localized prostate cancer and identifying candidates for focal therapy. Urology. 2008;72(6 Suppl):S12–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Hirano D, Werahera PN, Crawford ED, Lucia MS, DeAntoni EP, Miller GJ. Morphological analysis and classification of latent prostate cancer using a 3-dimensional computer algorithm: analysis of tumor volume, grade, tumor doubling time and life expectancy. J Urol. 1998;159(4):1265–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Rice KR, Furusato B, Chen Y, McLeod DG, Sesterhenn IA, Brassell SA. Clinicopathological behavior of single focus prostate adenocarcinoma. J Urol. 2009;182(6):2689–94.PubMedCrossRefGoogle Scholar
  23. 23.
    Ahmed HU. The index lesion and the origin of prostate cancer. N Engl J Med. 2009;361(17):1704–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Villers A, Lemaitre L, Haffner J, Puech P. Current status of MRI for the diagnosis, staging and prognosis of prostate cancer: implications for focal therapy and active surveillance. Curr Opin Urol. 2009;19(3):274–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Onik G. Rationale for a “male lumpectomy,” a prostate cancer targeted approach using cryoablation: results in 21 patients with at least 2 years of follow-up. Cardiovasc Intervent Radiol. 2008;31(1):98–106.PubMedCrossRefGoogle Scholar
  26. 26.
    Lindner U, Weersink RA, Haider MA, et al. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J Urol. 2009;182(4):1371–7.PubMedCrossRefGoogle Scholar
  27. 27.
    de Senneville BD, Mougenot C, Moonen CT. Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound. Magn Reson Med. 2007;57(2):319–30.PubMedCrossRefGoogle Scholar
  28. 28.
    de Senneville BD, Mougenot C, Quesson B, Dragonu I, Grenier N, Moonen CT. MR thermometry for monitoring tumor ablation. Eur Radiol. 2007;17(9):2401–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Bostwick DG, Waters DJ, Farley ER, et al. Group consensus reports from the Consensus Conference on Focal Treatment of Prostatic Carcinoma, Celebration, Florida, February 24, 2006. Urology. 2007;70(6 Suppl):42–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Eggener SE, Scardino PT, Carroll PR, et al. Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J Urol. 2007;178(6):2260–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Moran BJ, Braccioforte MH, Conterato DJ. Re-biopsy of the prostate using a stereotactic transperineal technique. J Urol. 2006;176(4 Pt 1):1376–1381. discussion 1381.PubMedCrossRefGoogle Scholar
  32. 32.
    Pinkstaff DM, Igel TC, Petrou SP, Broderick GA, Wehle MJ, Young PR. Systematic transperineal ultrasound-guided template biopsy of the prostate: three-year experience. Urology. 2005;65(4):735–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang L, Mullerad M, Chen HN, et al. Prostate cancer: incremental value of endorectal MR imaging findings for prediction of extracapsular extension. Radiology. 2004;232(1):133–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang L, Hricak H, Kattan MW, Chen HN, Scardino PT, Kuroiwa K. Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms. Radiology. 2006;238(2):597–603.PubMedCrossRefGoogle Scholar
  35. 35.
    Partin AW, Mangold LA, Lamm DM, Walsh PC, Epstein JI, Pearson JD. Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology. 2001;58(6):843–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang L, Hricak H, Kattan MW, et al. Prediction of seminal vesicle invasion in prostate cancer: incremental value of adding endorectal MR imaging to the Kattan nomogram. Radiology. 2007;242(1):182–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Ramsden AR, Chodak G. An analysis of risk factors for biochemical progression in patients with seminal vesicle invasion: validation of Kattan’s nomogram in a pathological subgroup. BJU Int. 2004;93(7):961–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang L, Hricak H, Kattan MW, et al. Combined endorectal and phased-array MRI in the prediction of pelvic lymph node metastasis in prostate cancer. AJR Am J Roentgenol. 2006;186(3):743–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Miyamoto K, Abe S, Kawakami Y. Picture archiving and communication system in Hokkaido University hospital: advantage and disadvantage of HU-PACS chest roentgenogram images in the outpatient clinic. J Digit Imaging. 1991;4(4 Suppl 1):28–31.PubMedCrossRefGoogle Scholar
  40. 40.
    De Backer AI, Mortele KJ, De Keulenaer BL. Picture archiving and communication system–Part one: filmless radiology and distance radiology. JBR-BTR. 2004;87(5):234–41.PubMedGoogle Scholar
  41. 41.
    Wang L, Zhang J, Schwartz LH, et al. Incremental value of multiplanar cross-referencing for prostate cancer staging with endorectal MRI. AJR Am J Roentgenol. 2007;188(1):99–104.PubMedCrossRefGoogle Scholar
  42. 42.
    Carroll PR, Presti Jr JC, Small E, Roach 3rd M. Focal therapy for prostate cancer 1996: maximizing outcome. Urology. 1997;49(3A Suppl):84–94.PubMedCrossRefGoogle Scholar
  43. 43.
    Blute ML, Bostwick DG, Bergstralh EJ, et al. Anatomic site-specific positive margins in organ-confined prostate cancer and its impact on outcome after radical prostatectomy. Urology. 1997;50(5):733–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Wefer AE, Hricak H, Vigneron DB, et al. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol. 2000;164(2):400–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Noguchi M, Stamey TA, Neal JE, Yemoto CE. An analysis of 148 consecutive transition zone cancers: clinical and histological characteristics. J Urol. 2000;163(6):1751–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Stamey TA, Donaldson AN, Yemoto CE, McNeal JE, Sozen S, Gill H. Histological and clinical findings in 896 consecutive prostates treated only with radical retropubic prostatectomy: epidemiologic significance of annual changes. J Urol. 1998;160(6 Pt 2):2412–7.PubMedGoogle Scholar
  47. 47.
    Reissigl A, Pointner J, Strasser H, Ennemoser O, Klocker H, Bartsch G. Frequency and clinical significance of transition zone cancer in prostate cancer screening. Prostate. 1997;30(2):130–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Philip J, Manikandan R, Viswanathan P. Prostate cancers in the transition zone: part 2; clinical aspects. BJU Int. 2005;95(6):909.PubMedCrossRefGoogle Scholar
  49. 49.
    Erbersdobler A, Augustin H, Schlomm T, Henke RP. Prostate cancers in the transition zone: part 1; pathological aspects. BJU Int. 2004;94(9):1221–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Augustin H, Erbersdobler A, Hammerer PG, Graefen M, Huland H. Prostate cancers in the transition zone: part 2; clinical aspects. BJU Int. 2004;94(9):1226–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Gelet A, Chapelon JY, Bouvier R, Rouviere O, Lyonnet D, Dubernard JM. Transrectal high intensity focused ultrasound for the treatment of localized prostate cancer: factors influencing the outcome. Eur Urol. 2001;40(2):124–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Fleshner NE, Fair WR. Indications for transition zone biopsy in the detection of prostatic carcinoma. J Urol. 1997;157(2):556–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Lui PD, Terris MK, McNeal JE, Stamey TA. Indications for ultrasound guided transition zone biopsies in the detection of prostate cancer. J Urol. 1995;153(3 Pt 2):1000–3.PubMedGoogle Scholar
  54. 54.
    Akin O, Sala E, Moskowitz CS, et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology. 2006;239(3):784–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Coakley FV, Kurhanewicz J, Lu Y, et al. Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging. Radiology. 2002;223(1):91–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90(10):766–71.PubMedCrossRefGoogle Scholar
  57. 57.
    Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol. 1999;17(5):1499–507.PubMedCrossRefGoogle Scholar
  58. 58.
    Cookson MS, Fleshner NE, Soloway SM, Fair WR. Correlation between Gleason score of needle biopsy and radical prostatectomy specimen: accuracy and clinical implications. J Urol. 1997;157(2):559–62.PubMedCrossRefGoogle Scholar
  59. 59.
    Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging–clinicopathologic study. Radiology. 1999;213(2):473–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Zakian KL, Sircar K, Hricak H, et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005;234(3):804–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Shukla-Dave A, Hricak H, Ishill NM, et al. Correlation of MR imaging and MR spectroscopic imaging findings with Ki-67, phospho-Akt, and androgen receptor expression in prostate cancer. Radiology. 2009;250(3):803–12.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wang L, Mazaheri Y, Zhang J, Ishill NM, Kuroiwa K, Hricak H. Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology. 2008;246(1):168–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Shukla-Dave A, Hricak H, Kattan MW, et al. The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis. BJU Int. 2007;99(4):786–93.PubMedCrossRefGoogle Scholar
  64. 64.
    Kalbhen CL, Hricak H, Shinohara K, et al. Prostate carcinoma: MR imaging findings after cryosurgery. Radiology. 1996;198(3):807–11.PubMedCrossRefGoogle Scholar
  65. 65.
    Parivar F, Hricak H, Shinohara K, et al. Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy. Urology. 1996;48(4):594–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Rouviere O, Girouin N, Glas L, et al. Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI. Eur Radiol. 2010;20(1):48–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Zlotta AR, Djavan B, Matos C, et al. Percutaneous transperineal radiofrequency ablation of prostate tumour: safety, feasibility and pathological effects on human prostate cancer. Br J Urol. 1998;81(2):265–75.PubMedCrossRefGoogle Scholar
  68. 68.
    McGahan JP, Browning PD, Brock JM, Tesluk H. Hepatic ablation using radiofrequency electrocautery. Invest Radiol. 1990;25(3):267–70.PubMedCrossRefGoogle Scholar
  69. 69.
    Kudo M. Radiofrequency ablation for hepatocellular carcinoma: updated review in 2010. Oncology. 2010;78(Suppl 1):113–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Dodd III GD, Soulen MC, Kane RA. Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough. Radiographics. 2000;20(1):9–27.PubMedCrossRefGoogle Scholar
  71. 71.
    Lencioni R, Cioni D, Crocetti L, et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology. 2005;234(3):961–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Clark TW, Millward SF, Gervais DA, et al. Reporting standards for percutaneous thermal ablation of renal cell carcinoma. J Vasc Interv Radiol. 2006;17(10):1563–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Cosman ER, Nashold BS, Ovelman-Levitt J. Theoretical aspects of radiofrequency lesions in the dorsal root entry zone. Neurosurgery. 1984;15(6):945–50.PubMedGoogle Scholar
  74. 74.
    Larson TR, Bostwick DG, Corica A. Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissue in patients with benign prostatic hyperplasia. Urology. 1996;47(4):463–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer. 2000;88(11):2452–63.PubMedCrossRefGoogle Scholar
  76. 76.
    Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol. 1996;3(3):212–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Liu Z, Lobo SM, Humphries S, et al. Radiofrequency tumor ablation: insight into improved efficacy using computer modeling. AJR Am J Roentgenol. 2005;184(4):1347–52.PubMedCrossRefGoogle Scholar
  78. 78.
    Leveillee RJ, Hoey MF, Hulbert JC, Mulier P, Lee D, Jesserun J. Enhanced radiofrequency ablation of canine prostate utilizing a liquid conductor: the virtual electrode. J Endourol. 1996;10(1):5–11.PubMedCrossRefGoogle Scholar
  79. 79.
    Liu JB, Merton DA, Wansaicheong G, et al. Contrast enhanced ultrasound for radio frequency ablation of canine prostates: initial results. J Urol. 2006;176(4 Pt 1):1654–60.PubMedCrossRefGoogle Scholar
  80. 80.
    Liu JB, Wansaicheong G, Merton DA, et al. Canine prostate: contrast-enhanced US-guided radiofrequency ablation with urethral and neurovascular cooling–initial experience. Radiology. 2008;247(3):717–25.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Patriarca C, Bergamaschi F, Gazzano G, et al. Histopathological findings after radiofrequency (RITA) treatment for prostate cancer. Prostate Cancer Prostatic Dis. 2006;9(3):266–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Moore CM, Pendse D, Emberton M. Photodynamic therapy for prostate cancer–a review of current status and future promise. Nat Clin Pract Urol. 2009;6(1):18–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol. 1992;55(1):145–57.PubMedCrossRefGoogle Scholar
  84. 84.
    Borle F, Radu A, Monnier P, van den Bergh H, Wagnieres G. Evaluation of the photosensitizer Tookad for photodynamic therapy on the Syrian golden hamster cheek pouch model: light dose, drug dose and drug-light interval effects. Photochem Photobiol. 2003;78(4):377–83.PubMedCrossRefGoogle Scholar
  85. 85.
    Koudinova NV, Pinthus JH, Brandis A, et al. Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int J Cancer. 2003;104(6):782–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Zilberstein J, Schreiber S, Bloemers MC, et al. Antivascular treatment of solid melanoma tumors with bacteriochlorophyll-serine-based photodynamic therapy. Photochem Photobiol. 2001;73(3):257–66.PubMedCrossRefGoogle Scholar
  87. 87.
    Eggener SE, Coleman JA. Focal treatment of prostate cancer with vascular-targeted photodynamic therapy. Sci World J. 2008;8:963–73.CrossRefGoogle Scholar
  88. 88.
    Zhou X, Chen B, Hoopes PJ, Hasan T, Pogue BW. Tumor vascular area correlates with photosensitizer uptake: analysis of verteporfin microvascular delivery in the Dunning rat prostate tumor. Photochem Photobiol. 2006;82(5):1348–57.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhou X, Pogue BW, Chen B, et al. Pretreatment photosensitizer dosimetry reduces variation in tumor response. Int J Radiat Oncol Biol Phys. 2006;64(4):1211–20.PubMedCrossRefGoogle Scholar
  90. 90.
    Windahl T, Andersson SO, Lofgren L. Photodynamic therapy of localised prostatic cancer. Lancet. 1990;336(8723):1139.PubMedCrossRefGoogle Scholar
  91. 91.
    Nathan TR, Whitelaw DE, Chang SC, et al. Photodynamic therapy for prostate cancer recurrence after radiotherapy: a phase I study. J Urol. 2002;168(4 Pt 1):1427–32.PubMedCrossRefGoogle Scholar
  92. 92.
    Moore CM, Nathan TR, Lees WR, et al. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Lasers Surg Med. 2006;38(5):356–63.PubMedCrossRefGoogle Scholar
  93. 93.
    Zaak D, Sroka R, Höppner M, et al. Photodynamic therapy by means of 5-ALA induced PPIX in human prostate cancer – preliminary results. Med Laser Appl. 2003;18(1):91–5.CrossRefGoogle Scholar
  94. 94.
    Hsi RA, Kapatkin A, Strandberg J, et al. Photodynamic therapy in the canine prostate using motexafin lutetium. Clin Cancer Res. 2001;7(3):651–60.PubMedGoogle Scholar
  95. 95.
    Pinthus JH, Bogaards A, Weersink R, Wilson BC, Trachtenberg J. Photodynamic therapy for urological malignancies: past to current approaches. J Urol. 2006;175(4):1201–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Verigos K, Stripp DC, Mick R, et al. Updated results of a phase I trial of motexafin lutetium-mediated interstitial photodynamic therapy in patients with locally recurrent prostate cancer. J Environ Pathol Toxicol Oncol. 2006;25(1–2):373–87.PubMedCrossRefGoogle Scholar
  97. 97.
    Patel H, Mick R, Finlay J, et al. Motexafin lutetium-photodynamic therapy of prostate cancer: short- and long-term effects on prostate-specific antigen. Clin Cancer Res. 2008;14(15):4869–76.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zhu TC, Hahn SM, Kapatkin AS, et al. In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy. Photochem Photobiol. 2003;77(1):81–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Zhu TC, Finlay JC, Hahn SM. Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy. J Photochem Photobiol B. 2005;79(3):231–41.PubMedCrossRefGoogle Scholar
  100. 100.
    Li J, Zhu TC. Determination of in vivo light fluence distribution in a heterogeneous prostate during photodynamic therapy. Phys Med Biol. 2008;53(8):2103–14.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yu G, Durduran T, Zhou C, et al. Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light. Photochem Photobiol. 2006;82(5):1279–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Schreiber S, Gross S, Brandis A, et al. Local photodynamic therapy (PDT) of rat C6 glioma xenografts with Pd-bacteriopheophorbide leads to decreased metastases and increase of animal cure compared with surgery. Int J Cancer. 2002;99(2):279–85.PubMedCrossRefGoogle Scholar
  103. 103.
    Gross S, Gilead A, Scherz A, Neeman M, Salomon Y. Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat Med. 2003;9(10):1327–31.PubMedCrossRefGoogle Scholar
  104. 104.
    Mazor O, Brandis A, Plaks V, et al. WST11, a novel water-soluble bacteriochlorophyll derivative; cellular uptake, pharmacokinetics, biodistribution and vascular-targeted photodynamic activity using melanoma tumors as a model. Photochem Photobiol. 2005;81(2):342–51.PubMedCrossRefGoogle Scholar
  105. 105.
    Weersink RA, Forbes J, Bisland S, et al. Assessment of cutaneous photosensitivity of TOOKAD (WST09) in preclinical animal models and in patients. Photochem Photobiol. 2005;81(1):106–13.PubMedCrossRefGoogle Scholar
  106. 106.
    Trachtenberg J, Bogaards A, Weersink RA, et al. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: assessment of safety and treatment response. J Urol. 2007;178(5):1974–1979. discussion 1979.PubMedCrossRefGoogle Scholar
  107. 107.
    Trachtenberg J, Weersink RA, Davidson SR, et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int. 2008;102(5):556–62.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bob Djavan
    • 1
  • Herbert Lepor
    • 2
  • Reza Zare
    • 1
  • Seyed Saeid Dianat
    • 1
  1. 1.Department of UrologyNew York University VA University HospitalNew YorkUSA
  2. 2.Department of UrologyNew York University Langone Medical CenterNew YorkUSA

Personalised recommendations