Microwave Ablation for Cancer: Physics, Performance, Innovation, and the Future

  • Thomas P. Ryan
Reference work entry


Microwave treatment (MW) for cancer dates back to the 1970s, with continuous development, innovation, and clinical improvements ongoing to the present day. MW physics is reviewed to demonstrate the inherent performance advantages with significant penetration and time-savings compared to competing energy sources which have pioneered contemporary ablation therapy. A review of current antenna designs and their performance is covered, as well as historical designs that provide much of the basis of current clinical use. To address ever larger tumors, the transition from single to multiple antennas is discussed, including antenna arrays powered synchronously versus asynchronous operation and the advantages. The progression from low power (5–15 W) to high power (60–200 W) in the present day systems is discussed, as well as the differentiation among frequencies of 433, 915 and 2,450 MHz, including antenna dimensions and practicality in relation to various treatment target sites. The utilization of numerical modeling is shown both for power deposition patterns, temperature distribution predictions, and predictions of ablation coverage. To optimize MW thermal therapy, several aspects of localization and treatment are discussed, which are slowly evolving to aid in more precise treatment, guided by real-time assessment. Evolutionary aspects of treatment include treatment planning, image guidance, coregistration, navigation, and real-time treatment assessment. Many of these aspects are under development and will provide the new and needed capabilities necessary for future systems incorporating imaging and ablation tools for the physician.


Radio Frequency Ablation Zone Specific Absorption Rate Microwave Ablation Antenna Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D’Ippolito G, Goldberg SN. Radiofrequency ablation of hepatic tumors. Tech Vasc Interv Radiol. 2002;5:141–55.CrossRefPubMedGoogle Scholar
  2. 2.
    Nardone DT, Smith DL, Martinez-Hernandez A, Consigny PM, Kosman Z, Rosen A, Walinsky P. Microwave thermal balloon angioplasty in the atherosclerotic rabbit. Am Heart J. 1994;127:198–203.CrossRefPubMedGoogle Scholar
  3. 3.
    Smith DL, Walinsky P, Martinez-Hernandez A, Rosen A, Sterzer F, Kosman Z. Microwave thermal balloon angioplasty in the normal rabbit. Am Heart J. 1992;123:1516–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Landau C, Currier JW, Haudenschild CC, Minihab AC, Heymann D, Faxon DP. Microwave balloon angioplasty effectively seals arterial dissections in an atherosclerotic rabbit model. J Am Coll Cardiol. 1994;23:1700–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Young LA, Boehm RF. A finite difference heat transfer analysis of a percutaneous transluminal microwave angioplasty system. J Biomech Eng. 1993;115:441–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Lin JC. Catheter microwave ablation therapy for cardiac arrhythmias. Bioelectromagnetics. 1999;20(Suppl 4):120–32.CrossRefGoogle Scholar
  7. 7.
    Thomas SP, Clout R, Deery C, Mohan AS, Ross DL. Microwave ablation of myocardial tissue: the effect of element design, tissue coupling, blood flow, power, and duration of exposure on lesion size. J Cardiovasc Electrophysiol. 1999;10:72–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Lin JC, Beckman KJ, Hariman RJ, Bharati S, Lev M, Wang YJ. Microwave ablation of the atrioventricular junction in open-chest dogs. Bioelectromagnetics. 1995;16:97–105.CrossRefPubMedGoogle Scholar
  9. 9.
    Herron DM, Grabowy R, Connolly R, Schwaitzberg SD. The limits of bloodwarming: maximally heating blood with an inline microwave bloodwarmer. J Trauma. 1997;43:219–26.CrossRefPubMedGoogle Scholar
  10. 10.
    Holzman S, Connolly RJ, Schwaitzberg SD. The effect of in-line microwave energy on blood: a potential modality for blood warming. J Trauma. 1992;33:89–93.CrossRefPubMedGoogle Scholar
  11. 11.
    Langberg JJ, Wonnell T, Chin MC, Finkbeiner W, Scheinman M, Stauffer P. Catheter ablation of the atrioventricular junction using a helical microwave antenna: a novel means of coupling energy to the endocardium. Pacing Clin Electrophysiol. 1991;14:2105–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Larson TR, Blute ML, Tri JL, Whotlock SV. Contrasting heating patterns and efficiency of the Prostatron and Targis microwave antennae for thermal treatment of benign prostatic hyperplasia. Urology. 1998;6:908–15.CrossRefGoogle Scholar
  13. 13.
    Djavan B, Larson TR, Blute ML, Marberger M. Transurethral microwave thermotherapy: what role should it play versus medical management in the treatment of benign prostatic hyperplasia? Urology. 1998;52:935–47.CrossRefPubMedGoogle Scholar
  14. 14.
    Simon CJ, Dupuy DE. Percutaneous minimally invasive therapies in the treatment of bone tumors: thermal ablation. Semin Musculoskelet Radiol. 2006;10:137–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25:S69–83.CrossRefPubMedGoogle Scholar
  16. 16.
    Dong BW, Liang P, Yu XL, Zeng XQ, Wang PJ, Su L, Wang XD, Xin H, Li S. Sonographically guided microwave coagulation treatment of liver cancer: an experimental and clinical study. AJR Am J Roentgenol. 1998;171:449–54.CrossRefPubMedGoogle Scholar
  17. 17.
    Matsukawa T, Yamashita Y, Arakawa A, Nishiharu T, Urata J, Murakami R, Takahashi M, Yoshimatsu S. Percutaneous microwave coagulation therapy in liver tumors. A 3-year experience. Acta Radiol. 1997;38:410–5.PubMedGoogle Scholar
  18. 18.
    Boss A, Clasen S, Kuczyk M, Schick F, Pereira PL. Image-guided radiofrequency ablation of renal cell carcinoma. Eur Radiol. 2007;17:725–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Wasser EJ, Dupuy DE. Microwave ablation in the treatment of primary lung tumors. Semin Respir Crit Care Med. 2008;29:384–94.CrossRefPubMedGoogle Scholar
  20. 20.
    Wolf FJ, Grand DJ, Machan JT, Dipetrillo TA, Mayo-Smith WW, Dupuy DE. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology. 2008;247:871–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Guy AW, Lehmann JF, Stonebridge JB. Therapeutic applications of electromagnetic power. Proc IEEE. 1974;62:55–75.CrossRefGoogle Scholar
  22. 22.
    Strohbehn JW, Bowers ED, Walsh JE, Douple EB. An invasive microwave antenna for locally-induced hyperthermia for cancer therapy. J Microw Power. 1979;14:339–50.CrossRefPubMedGoogle Scholar
  23. 23.
    Douple EB, Strohbehn JW, Bowers ED, Walsh JE. Cancer therapy with localized hyperthermia using an invasive microwave system. J Microw Power. 1979;14:181–6.PubMedGoogle Scholar
  24. 24.
    Bigu-del-Blanco J, Romero-Sierra C. The design of a monopole radiator to investigate the effect of microwave radiation in biological systems. J Bioeng. 1977;1:1181–4.Google Scholar
  25. 25.
    Turner P. Interstitial equal-phase arrays for EM hyperthermia. IEEE Trans Microw Theory Tech. 1986;MTT-34:572–8.CrossRefGoogle Scholar
  26. 26.
    Emami B, Stauffer P, Dewhirst MW, Prionas S, Ryan T, Corry P, Herman T, Kapp DS, Myerson RJ, Samulski T, et al. RTOG quality assurance guidelines for interstitial hyperthermia. Int J Radiat Oncol Biol Phys. 1991;20:1117–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Scott RM, Cheung AY, Samaras GM. Clinical local heating by microwaves. Natl Cancer Inst Monogr. 1982;61:351–5.PubMedGoogle Scholar
  28. 28.
    Harada T, Etori K, Kumazaki T, Nishizawa O, Noto H, Tsuchidas S. Microwave surgical treatment of diseases of prostate. Urology. 1985;26:572–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Sapozink MD, Boyd SD, Astrahan MA, Jozsef G, Petrovich Z. Transurethral hyperthermia for benign prostatic hyperplasia: preliminary clinical results. J Urol. 1990;143:944–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Tabuse Y, Tabuse K, Mori K, Nagai Y, Kobayashi Y, Egawa H, Noguchi H, Yamaue H, Katsumi M, Nagasaki Y. Percutaneous microwave tissue coagulation in liver biopsy: experimental and clinical studies. Nippon Geka Hokan. 1986;55:381–92.PubMedGoogle Scholar
  31. 31.
    Murakami R, Yoshimatsu S, Yamashita Y, Matsukawa T, Takahashi M, Sagara K. Treatment of hepatocellular carcinoma: value of percutaneous microwave coagulation. AJR Am J Roentgenol. 1995;164:1159–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Diederich CJ. Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperthermia. 2005;21:745–53.CrossRefPubMedGoogle Scholar
  33. 33.
    Lencioni R, Crocetti L. Image-guided thermal ablation of hepatocellular carcinoma. Crit Rev Oncol Hematol. 2008;66:200–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Swift B, Strickland A, West K, Clegg P, Cronin N, Lloyd D. The histological features of microwave coagulation therapy: an assessment of a new applicator design. Int J Exp Pathol. 2003;84:17–30.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Strickland AD, Clegg PJ, Cronin NJ, Swift B, Festing M, West KP, Robertson GS, Lloyd DM. Experimental study of large-volume microwave ablation in the liver. Br J Surg. 2002;89:1003–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Ahmad F, Strickland AD, Wright GM, Elabassy M, Kiruparan P, Bell PRF, Lloyd DM. Laparoscopic microwave tissue ablation of hepatic metastasis from a parathyroid carcinoma. Eur J Surg Oncol (EJSO). 2005;31:321–2.CrossRefGoogle Scholar
  37. 37.
    Ryan TP, Clegg P. Novel microwave applicators for thermal therapy, ablation, and hemostasis. In: Ryan TP, editor. Thermal treatment of tissue: energy delivery and assessment V, vol. 6440. Bellingham: SPIE Press; 2009.Google Scholar
  38. 38.
    Garrean S, Hering J, Saeid A, Hoopes PJ, Helton WS, Ryan TP, Espat NJ. Ultrasound monitoring of a novel microwave ablation (MWA) device in porcine liver: lessons learned and phenomena observed on ablative effects near major hepatic vessels. J Gastorintest Surg. 2009;13:334–40.CrossRefGoogle Scholar
  39. 39.
    Ryan TP. Comparison of six microwave antennas for hyperthermia treatment of cancer: SAR results for single antennas and arrays. Int J Radiat Oncol Biol Phys. 1991;21:403–13.CrossRefPubMedGoogle Scholar
  40. 40.
    Chen JC, Moriarty JA, Derbyshire JA, Peters RD, Trachenberg J, Bell SD, Doyle J, Arrelano R, Wright GA, Henkleman RM, Hinks RS, Lok SY, Toi A, Kucharczyk W. Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology. 2000;214:290–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Clegg PJ. Microwave ablation therapy for liver cancers [doctoral dissertation]. University of Bath, UK; 2002.Google Scholar
  42. 42.
    Tamaki K, Shimizu I, Oshio A, Fukuno H, Inoue H, Tsutsui A, Shibata H, Sano N, Ito S. Influence of large intrahepatic blood vessels on the gross and histological characteristics of lesions produced by radiofrequency ablation in a pig liver model. Liver Int. 2004;24:696–701.CrossRefPubMedGoogle Scholar
  43. 43.
    Chinn SB, Lee Jr FT, Kennedy GD, Chinn C, Johnson CD, Winter 3rd TC, Warner TF, Mahvi DM. Effect of vascular occlusion on radiofrequency ablation of the liver: results in a porcine model. AJR Am J Roentgenol. 2001;176:789–95.CrossRefPubMedGoogle Scholar
  44. 44.
    Tungjitkusolmun S, Staelin ST, Haemmerich D, Tsai JZ, Webster JG, Lee Jr FT, Mahvi DM, Vorperian VR. Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans Biomed Eng. 2002;49:3–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Skinner MG, Lizuka MN, Kolios MC, Sherar MD. A theoretical comparison of energy sources – microwave, ultrasound and laser – for interstitial thermal therapy. Phys Med Biol. 1998;43:3535–47.CrossRefPubMedGoogle Scholar
  46. 46.
    Ryan T. A tutorial on recent advances in thermal therapy systems. In: Ryan TP, editor. Thermal treatment of tissue: energy delivery and assessment IV, vol. 6440. Bellingham: SPIE Press; 2007. p. 1–19.Google Scholar
  47. 47.
    Cha CH, Lee Jr FT, Gurney JM, Markhardt BK, Warner TF, Kelcz F, Mahvi DM. CT versus sonography for monitoring radiofrequency ablation in a porcine liver. AJR Am J Roentgenol. 2000;175:705–11.CrossRefPubMedGoogle Scholar
  48. 48.
    Trembly BS, Ryan TP, Strohbehn JW. Physics of microwave hyperthermia. In: Urano M, Douple E, editors. Hyperthermia and oncology. Volume 3. Interstitial hyperthermia: physics, biology and clinical aspects. New York: VSP Press; 1991. p. 11–98.Google Scholar
  49. 49.
    Thuéry J, Grant EH. Microwaves: industrial, scientific and medical applications. Boston: Artech House; 1992.Google Scholar
  50. 50.
    Chin L, Sherar M. Changes in dielectric properties of ex vivo bovine liver at 915 MHz during heating. Phys Med Biol. 2001;46:197–211.CrossRefPubMedGoogle Scholar
  51. 51.
    Moore JE, Zouridakis G. Biomedical technology devices handbook. Boca Raton: CRC Press; 2003. p. 31–2.Google Scholar
  52. 52.
    Ryan TP, Hoopes PJ, Taylor JH, Strohbehn JW, Roberts DW, Douple EB, Coughlin CT. Experimental brain hyperthermia: techniques for heat delivery and thermometry. Int J Radiat Oncol Biol Phys. 1991;20:739–50.CrossRefPubMedGoogle Scholar
  53. 53.
    Prakash P, Converse MC, Webster JG, Mahvi DM. An optimal sliding choke antenna for hepatic microwave ablation. IEEE Trans Biomed Eng. 2009;56:2470–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Prakash P, Deng G, Converse MC, Webster JG, Mahvi DM, Ferris MC. Design optimization of a robust sleeve antenna for hepatic microwave ablation. Phys Med Biol. 2008;53:1057–69.CrossRefPubMedGoogle Scholar
  55. 55.
    Hines-Peralta AU, Pirani N, Clegg P, Cronin N, Ryan TP, Liu Z, Goldberg SN. Microwave ablation: results with a 2.45-GHz applicator in ex vivo bovine and in vivo porcine liver. Radiology. 2006;239:94–102.CrossRefPubMedGoogle Scholar
  56. 56.
    Yang JM, Bertram JM, Converse MC, O’Rourke AP, Webster JG, Hagness S, Will JA, Mahvi DV. A floating sleeve antenna yields localized hepatic microwave ablation. IEEE Trans Biomed Eng. 2006;53:533–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Durick NA, Laeseke PF, Broderick LS, Lee Jr FT, Sampson LA, Frey TM, Warner TF, Fine JP, van der Weide DW, Brace CL. Microwave ablation with triaxial antennas tuned for lung: results in an in-vivo porcine model. Radiology. 2008;247:80–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Laeseke PF, Lee Jr FT, Sampson LA, van der Weide DW, Brace CL. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol. 2009;20:1224–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hardie D, Sangster AJ, Cronin NJ. Coupled field analysis of heat flow in the near field of a microwave applicator for tumor ablation. Electromagn Biol Med. 2006;25:1–15.CrossRefGoogle Scholar
  60. 60.
    Satoh T, Stauffer PR, Fike JR. Thermal distribution studies of helical coil microwave for interstitial hyperthermia. Int J Radiat Oncol Biol Phys. 1988;15:1209–18.CrossRefPubMedGoogle Scholar
  61. 61.
    Satoh T, Seilman TM, Stauffer PR, Sneed PK, Fike JR. Interstitial helical coil microwave antenna for experimental brain hyperthermia. Neurosurgery. 1988;23:564–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Trembly BS. The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Biomed Eng. 1985;MTT-32:152–7.CrossRefGoogle Scholar
  63. 63.
    Dadd JS, Ryan TP, Platt R. Tissue impedance as a function of temperature and time. Biomed Sci Instrum. 1996;32:205–14.PubMedGoogle Scholar
  64. 64.
    Ryan TP, Turner PF, Hamilton B. Interstitial microwave transition from hyperthermia to ablation: historical perspectives and current trends in thermal therapy. Int J Hyperthermia. 2010;26:415–33.CrossRefPubMedGoogle Scholar
  65. 65.
    McGahan JP, Dodd GD. Radiofrequency of the liver: current status. AJR Am J Roentgenol. 2001;176:3–16.CrossRefGoogle Scholar
  66. 66.
    Kuang M, Lu MD, Xie XY, Xu XY, Mo HX, Liu GJ, Xu ZF, Zheng YL, Liang JY. Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna: experimental and clinical studies. Radiology. 2007;242:914–24.CrossRefPubMedGoogle Scholar
  67. 67.
    Eppert V, Trembly BS, Richter HJ. Air cooling for an interstitial microwave hyperthermia antenna: theory and experiment. IEEE Trans Biomed Eng. 1991;38:450–60.CrossRefPubMedGoogle Scholar
  68. 68.
    Trembly BS, Douple EB, Hoopes PJ. The effect of air cooling on the radial temperature distribution of a single microwave hyperthermia antenna in vivo. Int J Hyperthermia. 1991;7:343–54.CrossRefPubMedGoogle Scholar
  69. 69.
    Scheiblich J, Petrowicz O. Radiofrequency-induced hyperthermia in the prostate. J Microw Power. 1982;17:203–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Strickland AD, Clegg PJ, Cronin NJ, Elabassy M, Lloyd DM. Rapid microwave ablation of large hepatocellular carcinoma in a high-risk patient. Asian J Surg. 2005;28:151–3.CrossRefPubMedGoogle Scholar
  71. 71.
    Grieco CA, Simon CJ, Mayo-Smith WW, DiPetrillo TA, Ready NE, Dupuy DE. Percutaneous image-guided thermal ablation and radiation therapy: outcomes of combined treatment for 41 patients with inoperable stage I/II non-small-cell lung cancer. J Vasc Interv Radiol. 2006;17:1117–24.CrossRefPubMedGoogle Scholar
  72. 72.
    Haemmerich D, Lee FT. Multiple applicator approaches for radiofrequency and microwave ablation. Int J Hyperthermia. 2005;21:93–106.CrossRefPubMedGoogle Scholar
  73. 73.
    Wright AS, Lee Jr FT, Mahvi DM. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann Surg Oncol. 2003;10:275–83.CrossRefPubMedGoogle Scholar
  74. 74.
    Dodd 3rd GD, Frank MS, Aribandi M, Chopra S, Chintapalli KN. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol. 2001;177:777–82.CrossRefPubMedGoogle Scholar
  75. 75.
    Cen MH, Yang W, Yan K, Zou MW, Solbiati L, Liu JB, Dai Y. Large liver tumors: protocol for radiofrequency ablation and its clinical application in 110 patients – mathematic model, overlapping mode, and electrode placement process. Radiology. 2004;232:260–71.CrossRefGoogle Scholar
  76. 76.
    Zhai W, Xu J, Zhao Y, Song Y, Sheng L, Jia P. Preoperative surgery planning for percutaneous hepatic microwave ablation. Med Image Comput Comput Assist Interv. 2008;11(Pt 2):569–77.PubMedGoogle Scholar
  77. 77.
    Xu J, Jia ZZ, Song ZJ, Yang XD, Chen K, Liang P. Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumours. Int J Med Robot. 2010;6:256–68.CrossRefPubMedGoogle Scholar
  78. 78.
    Laing P, Wang Y. Microwave ablation of hepatocellular carcinoma. Oncology. 2007;72:124–31.CrossRefGoogle Scholar
  79. 79.
    Morikawa S, Inubushi T, Kurumi Y, Naka S, Sato K, Tani T, Yamamoto I, Fujimura M. MR-guided microwave thermocoagulation therapy of liver tumors: initial clinical experiences using a 0.5 T open MR system. J Magn Reson Imaging. 2002;16:576–83.CrossRefPubMedGoogle Scholar
  80. 80.
    Sato K, Morikawa S, Inubushi T, Karumi Y, Naka S, Haque HA, Demura K, Tani T. Alternate bipolar MR navigation for microwave ablation of liver tumors. Magn Reson Med Sci. 2005;4:89–94.CrossRefPubMedGoogle Scholar
  81. 81.
    Keserci BM, Kokuryo D, Suzuki K, Kumamoto E, Okada A, Khankan AA, Kuroda K. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging. Eur J Radiol. 2006;59:175–82.CrossRefPubMedGoogle Scholar
  82. 82.
    Abe H, Kurumi Y, Naka S, Shiomi H, Umeda T, Naitoh H, Endo Y, Hanasawa K, Morikawa S, Tani T. Open-configuration MR-guided microwave thermocoagulation therapy for metastatic liver tumors from breast cancer. Breast Cancer. 2005;12(1):26–31.CrossRefPubMedGoogle Scholar
  83. 83.
    Morikawa S, Inubushi T, Kurumi Y, Naka S, Sato K, Tani T, Haque HA, Tokuda J, Hata N. New assistive devices for MR-guided microwave thermocoagulation of liver tumors. Acad Radiol. 2003;10:180–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Naka S, Kurumi Y, Shimizu T, Kondo H, Mekata E, Naito H, Kawaguchi A, Abe H, Endo Y, Hanasawa K, Tani T, Morikawa S, Ishizuka Y, Yamazaki M, Furukawa K. Tumor ablation with MRI navigation–a novel method of microwave coagulation therapy for hepatic tumor. Gan To Kagaku Ryoho. 2001;28:1591–4.PubMedGoogle Scholar
  85. 85.
    Morikawa S, Naka S, Murakami K, Kurumi Y, Shiomi H, Tani T, Haque HA, Tokuda J, Hata N, Inubushi T. Preliminary clinical experiences of a motorized manipulator for magnetic resonance image-guided microwave coagulation therapy of liver tumors. Am J Surg. 2009;198:340–7.CrossRefPubMedGoogle Scholar
  86. 86.
    Tokuda J, Fischer GS, DiMaio SP, Gobbi DG, Csoma C, Mewes PW, Fichtinger G, Tempany CM, Hata N. Integrated navigation and control software system for MRI-guided robotic prostate interventions. Comput Med Imaging Graph. 2010;34:3–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Masamune K, Fichtinger G, Patriciu A, Susil RC, Taylor RH, Kavoussi LR, Anderson JH, Sakuma I, Dohi T, Stoianovici D. System for robotically assisted percutaneous procedures with computed tomography guidance. Comput Aided Surg. 2001;6:370–83.CrossRefPubMedGoogle Scholar
  88. 88.
    Boctor EM, Choti MA, Burdette EC, Webster Iii RJ. Three-dimensional ultrasound-guided robotic needle placement: an experimental evaluation. Int J Med Robot. 2008;4:180–91.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Pollock R, Mozer P, Guzzo TJ, Marx J, Matlaga B, Petrisor D, Vigaru B, Badaan S, Stoianovici D, Allaf ME. Prospects in percutaneous ablative targeting: comparison of a computer-assisted navigation system and the AcuBot Robotic System. J Endourol. 2010;24:1269–72.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.FreeFall ConsultingAustinUSA

Personalised recommendations