Skip to main content

Electroporation

  • Reference work entry
  • First Online:
Image-Guided Cancer Therapy

Abstract

Nonthermal irreversible electroporation (NTIRE) is a minimally invasive tissue ablation modality in which high field strength, nanosecond to millisecond long pulsed electric fields are delivered across the cell to produce nanoscale defects in the cell membrane and thereby induce cell death. An important attribute of this technique is its ability to ablate cells in volumes of tissues while leaving intact the extracellular scaffold, including the mechanical scaffold of blood vessels and ducts. This is a review of the technology with a special emphasis on medical imaging. The review contains a background on the technology, mathematical modeling for treatment planning, fundamental findings from animal studies, first clinical results, and aspects of medical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weaver J, Chizmadzhev YA. Theory of electroporation: a review. Bioelectrochem Bioenerg. 1996;41:135–60.

    Article  CAS  Google Scholar 

  2. Chen C, Smye SW, Robinson MP, Evans JA. Membrane electroporation theories: a review. Med Biol Eng Comput. 2006;44:5–14.

    Article  CAS  PubMed  Google Scholar 

  3. Stopper H, Zimmermann U, Wecker E. High yields of DNA-transfer into mouse L cells by electropermeabilization. Z Naturforsch C. 1985;40:929–32.

    CAS  PubMed  Google Scholar 

  4. Teissie J, Golzio M, Rols MP. Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochim Biophys Acta. 2005;1724:270–80.

    Article  CAS  PubMed  Google Scholar 

  5. Neumann E, Schaeffer-Ridder M, Wany Y, Hofschneider PH. Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1982;1:841–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rubinsky B. Irreversible electroporation in medicine. Technol Cancer Res Treat. 2007;6(4):255–60.

    Article  PubMed  Google Scholar 

  7. Lelieveld HLM, Netermans S, de Haan SWH, editors. Food preservation by pulsed electric fields. From research to applications. Cambridge: Woodhead; 2007.

    Google Scholar 

  8. Beebe SJ, Fox PM, Rec LJ, Somers K, Stark RH, Schoenbach KH. Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci. 2002;30:286–92.

    Article  CAS  Google Scholar 

  9. Hamilton WA, Sale AJH. Effects of high electric fields on microorganisms. 2. Mechanism of action of the lethal effect. Biochim Biophys Acta. 1967;148:789–800.

    Article  CAS  Google Scholar 

  10. Sale AJ, Hamilton WA. Effects of high electric fields on microorganisms. 1. Killing of bacteria and yeasts. Biochim Biophys Acta. 1967;148:781–8.

    Article  Google Scholar 

  11. Sale AJ, Hamilton WA. Effects of high electric fields on microorganisms. 3. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta. 1968;163:37–43.

    Article  CAS  PubMed  Google Scholar 

  12. Rubinsky B, editor. Irreversible electroporation, Series in biomedical engineering. New York: Springer; 2010. p. 314.

    Google Scholar 

  13. Davalos RV, Mir L, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005;33(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  14. Davalos RV, Rubinsky B. Temperature considerations during irreversible electroporation. Int J Heat Mass Transfer. 2008;51(23–24):5617–22.

    Article  Google Scholar 

  15. Bower M, Sherwood L, Li Y, Martin R. Irreversible electroporation of the pancreas: definitive local therapy without systemic effects. J Surg Oncol. 2011;104(1):22–8.

    Article  PubMed  Google Scholar 

  16. Charpentier KP, Wolf F, Noble L, Winn B, Resnick M, Dupuy DE. Irreversible electroporation of the pancreas in swine: a pilot study. HPB. 2010;12(5):348–51.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ball C, Thomson K, Kavnoudias H. Irreversible electroporation: a new challenge in “out of operating theater” anesthesia. Anesth Analg. 2010;110:1305–9.

    Article  PubMed  Google Scholar 

  18. Lee EW, Chen C, Prieto VE, Dry SM, Loh CT, Kee ST. Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology. 2010;255(2):426–33.

    Article  PubMed  Google Scholar 

  19. Thomson KR, Cheung W, Ellis SJ, Federman D, Kavnoudias H, Loader-Oliver D, Roberts S, Evans P, Ball C, Haydon A. Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol. 2011;22(5):611–21.

    Article  PubMed  Google Scholar 

  20. Tracy CR, Kabbani W, Cadeddu JA. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int. 2011;107(12):1982–7.

    Article  PubMed  Google Scholar 

  21. Rubinsky B, Onik G, Mikus P. Irreversible electroporation: a new ablation modality–clinical implications. Technol Cancer Res Treat. 2007;6(1):37–48.

    Article  PubMed  Google Scholar 

  22. Onik G, Mikus P, Rubinsky B. Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat. 2007;6(4):295–300.

    Article  PubMed  Google Scholar 

  23. Schoellnast H, Monette S, Ezell PC, Deodhar A, Maybody M, Erinjeri JP, Stubblefield MD, Single GW, Hamilton WC, Solomon SB. Acute and subacute effects of irreversible electroporation on nerves: experimental study in a pig. Radiology. 2011;260(2):421–7.

    Article  PubMed  Google Scholar 

  24. Li W, Fan QY, Ji ZW, Qiu X, Li Z. The effects of irreversible electroporation (IRE) on nerves. PLoS One. 2011;6(4):e18831. doi:10.1371/journal.pone.0018831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maor E, Ivorra A, Leor J, Rubinsky B. Irreversible electroporation attenuates neointimal formation after angioplasty. IEEE Trans Biomed Eng. 2008;55(9):2268–74.

    Article  PubMed  Google Scholar 

  26. Maor E, Ivorra A, Rubinsky B. Non thermal irreversible electroporation: novel technology for vascular smooth muscle cells ablation. PLoS One. 2009;4(3):e4757.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Neal RE, Singh R, Hatcher HC, Kock ND, Torti SV, Davalos RV. Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Res Treat. 2010;123(1):295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brausi M, Gilberto GL, Simonini GL, Botticelli L, Gregorio C. Irreversible electroporation, a novel technology for focal ablation of prostate cancer: results of an interim pilot safety study in low-risk patients. Anticancer Res. 2011;31(5):1834–5.

    Google Scholar 

  29. Becker SM, Kuznetsov AV. Thermal damage reduction associated with in vivo skin electroporation: a numerical investigation justifying aggressive pre-cooling. Int J Heat Mass Transfer. 2007;50:105–16.

    Article  Google Scholar 

  30. Daniels CR, Rubinsky B. Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues. J Biomech Eng. 2009;131(7):071006.

    Article  PubMed  Google Scholar 

  31. Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng. 2006;53(7):1409–15.

    Article  PubMed  Google Scholar 

  32. Edd JF, Davalos RV. Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat. 2007;6:275–86.

    Article  PubMed  Google Scholar 

  33. Somersalo E, Cheney M, Isaacson D. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math. 1992;52:1023–40.

    Article  Google Scholar 

  34. Pennes HH. Analysis of tissue and arterial blood temperatures in the resting forearm. J Appl Physiol. 1948;1:93–122.

    CAS  PubMed  Google Scholar 

  35. Rubinsky B. Numerical bio-heat transfer. In: Minkowycz WJ, Sparrow EM, Murthy JY, editors. John Wiley ed. Handbook of numerical heat transfer. 2nd ed. Hoboken, NJ: Wiley; 2006, p. 851–93.

    Google Scholar 

  36. Henriques FC, Moritz AR. Studies in thermal injuries: the predictability and the significance of thermally induced rate processes leading to irreversible epidermal damage. Arch Pathol. 1947;43:489–502.

    Google Scholar 

  37. Diller KR. Modeling of bioheat transfer processes at high and low temperatures. In: Choi YI, editor. Bioengineering heat transfer. Boston: Academic; 1992. p. 157–357.

    Chapter  Google Scholar 

  38. Onik G, Rubinsky B. Irreversible electroporation: first patient experience focal therapy of prostate cancer. In: Rubinsky B, editor. Irreversible electroporation, Series in biomedical engineering. Berlin: Springer; 2010.

    Google Scholar 

  39. Thomson K. Human experience with irreversible electroporation. In: Rubinsky B, editor. Irreversible electroporation, Series in biomedical engineering. Berlin: Springer; 2010.

    Google Scholar 

  40. Rossmeisl JH, Garcia PA, Lanz OI, Hena-Guerrero N, Davalos VR. Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J Clin Oncol. 2011;29(13):E372–7.

    Article  PubMed  Google Scholar 

  41. Onik CC, Goldenberg HI, Moss AA, Rubinsky B, Christianson M. Ultrasonic characteristics of frozen liver. Cryobiology. 1984;21:321–8.

    Article  CAS  PubMed  Google Scholar 

  42. Gilbert JC, Onik GH, Haddick WK, Rubinsky B. The use of ultrasonic imaging for monitoring cryosurgery. IEEE Trans Biomed Eng. 1984;8:563.

    Google Scholar 

  43. Lee EW, Loh CT, Kee ST. Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol Cancer Res Treat. 2007;6(4):287–94.

    Article  PubMed  Google Scholar 

  44. Zhang Y, Guo Y, Ragin AB, Lewandowski RJ, Yang GY, Nijm GM, Sahakian AV, Yang GY, Omary RA, Larson AC. MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver tissue: preclinical feasibility studies in a rodent model. Radiology. 2010;256(2):424–32.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guo Y, Zhang Y, Nijm GM, Shakian AV, Yang GY, Omary RA, Larson AC. Irreversible electroporation in the liver: contrast inversion imaging approaches to differentiate reversible electroporation penumbra from irreversible electroporation zones. Radiology. 2011;258(2):461–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hjouj M, Rubinsky B. Magnetic resonance imaging characteristics of non-thermal irreversible electroporation in vegetable tissue. J Membr Biol. 2010;236(1):137–46.

    Article  CAS  PubMed  Google Scholar 

  47. Jossinet J, Marry E, Matias A. Electrical impedance endotomography. Phys Med Biol. 2002;47:2189–202.

    Article  PubMed  Google Scholar 

  48. Lionheart WR. EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol Meas. 2004;25:125–42.

    Article  PubMed  Google Scholar 

  49. Metherall P, Barber DC, Smallwood RH, Brown BH. Three-dimensional electrical impedance tomography. Nature. 1996;380:509–12.

    Article  CAS  PubMed  Google Scholar 

  50. Huang Y, Rubinsky B. Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells. Biomed Microdevices. 1999;2(2):145–50.

    Article  Google Scholar 

  51. Granot Y, Ivorra A, Maor E, Rubinsky B. In vivo imaging of irreversible electroporation by means of electrical impedance tomography. Phys Med Biol. 2009;54(16):4927–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hjouj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Hjouj, M., Rubinsky, B. (2013). Electroporation. In: Dupuy, D., Fong, Y., McMullen, W. (eds) Image-Guided Cancer Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0751-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0751-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0750-9

  • Online ISBN: 978-1-4419-0751-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics