Image-Guided Radiation Therapy for Lung Cancer

  • Farzan Siddiqui
  • Indrin J. Chetty
  • Munther Ajlouni
  • Benjamin Movsas
Reference work entry


Lung cancer is a major global health problem. Image-guided radiation therapy (IGRT), including stereotactic body radiation therapy and adaptive radiation therapy, is emerging as an important technique to try and deliver precise high-dose radiation to the tumor volume while minimizing dose to the normal structures. This chapter intends to highlight some of the features of IGRT including simulation for treatment planning, immobilization devices, target delineation for IGRT, setup and image verification, treatment delivery, radiobiology and physics considerations, clinical outcomes, and ongoing research.


Positron Emission Tomography Standardize Uptake Value Planning Target Volume Stereotactic Body Radiation Therapy Gross Tumor Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.PubMedCrossRefGoogle Scholar
  2. 2.
    American Cancer Society. Global cancer facts and figures. Atlanta: American Cancer Society; 2007.Google Scholar
  3. 3.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Le Chevalier T, Arriagada R, Quoix E, et al. Radiotherapy alone versus combined chemotherapy and radiotherapy in nonresectable non-small-cell lung cancer: first analysis of a randomized trial in 353 patients. J Natl Cancer Inst. 1991;83:417–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Bradley J, Graham MV, Winter K, et al. Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:318–28.PubMedCrossRefGoogle Scholar
  6. 6.
    Rosenzweig KE, Fox JL, Yorke E, et al. Results of a phase I dose-escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable nonsmall cell lung carcinoma. Cancer. 2005;103:2118–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Hayman JA, Martel MK, Ten Haken RK, et al. Dose escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a phase I trial. J Clin Oncol. 2001;19:127–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Kong FM, Hayman JA, Griffith KA, et al. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys. 2006;65:1075–86.PubMedCrossRefGoogle Scholar
  9. 9.
    Sura S, Gupta V, Yorke E, et al. Intensity-modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Radiother Oncol. 2008;87:17–23.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Liao ZX, Komaki RR, Thames Jr HD, et al. Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;76(3):775–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Gould MK, Maclean CC, Kuschner WG, et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001;285:914–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Toloza EM, Harpole L, Detterbeck F, et al. Invasive staging of non-small cell lung cancer: a review of the current evidence. Chest. 2003;123:157S–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Gould MK, Kuschner WG, Rydzak CE, et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med. 2003;139:879–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Reed CE, Harpole DH, Posther KE, et al. Results of the American College of Surgeons Oncology Group Z0050 trial: the utility of positron emission tomography in staging potentially operable non-small cell lung cancer. J Thorac Cardiovasc Surg. 2003;126:1943–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Bentel GC, Marks LB, Krishnamurthy R. Impact of cradle immobilization on setup reproducibility during external beam radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys. 1997;38:527–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Baba F, Shibamoto Y, Tomita N, et al. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results. Radiat Oncol. 2009;4:15.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Fox T, Elder E, Crocker I. Image registration and fusion techniques. In: Paulino AC, Teh BS, editors. PET-CT in radiotherapy treatment planning. Philadelphia: Saunders/Elsevier; 2008.Google Scholar
  18. 18.
    Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora’s box? Int J Radiat Oncol Biol Phys. 2004;59:4–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Nestle U, Kremp S, Schaefer-Schuler A, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med. 2005;46:1342–8.PubMedGoogle Scholar
  20. 20.
    Liu BJ, Dong JC, Xu CQ, et al. Accuracy of 18F-FDG PET/CT for lymph node staging in non-small-cell lung cancers. Chin Med J (Engl). 2009;122:1749–54.Google Scholar
  21. 21.
    Munley MT, Marks LB, Scarfone C, et al. Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer. 1999;23:105–14.PubMedCrossRefGoogle Scholar
  22. 22.
    Deniaud-Alexandre E, Touboul E, Lerouge D, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:1432–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59:78–86.PubMedCrossRefGoogle Scholar
  24. 24.
    Bradley JD, Bae K, Choi N, et al. A phase II comparative study of Gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non–small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys. 2009;75:S2.CrossRefGoogle Scholar
  25. 25.
    Jin JY, Ajlouni M, Chen Q, et al. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy. Radiother Oncol. 2006;78:177–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Underberg RW, Lagerwaard FJ, Cuijpers JP, et al. Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys. 2004;60:1283–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Underberg RW, Lagerwaard FJ, Slotman BJ, et al. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:253–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Droege RT, Bjarngard BE. Influence of metal screens on contrast in megavoltage x-ray imaging. Med Phys. 1979;6:487–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Droege RT, Bjarngard BE. Metal screen-film detector MTF at megavoltage x-ray energies. Med Phys. 1979;6:515–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Antonuk LE, El-Mohri Y, Huang W, et al. Initial performance evaluation of an indirect-detection, active matrix flat-panel imager (AMFPI) prototype for megavoltage imaging. Int J Radiat Oncol Biol Phys. 1998;42:437–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Ma CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim. 2006;31:30–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Kuriyama K, Onishi H, Sano N, et al. A new irradiation unit constructed of self-moving gantry-CT and linac. Int J Radiat Oncol Biol Phys. 2003;55:428–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Feldkamp IA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A. 1984;1:612–9.CrossRefGoogle Scholar
  34. 34.
    Jaffray DA, Siewerdsen JH, Wong JW, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53:1337–49.PubMedCrossRefGoogle Scholar
  35. 35.
    Morin O, Gillis A, Chen J, et al. Megavoltage cone-beam CT: system description and clinical applications. Med Dosim. 2006;31:51–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Khan FM. The physics of radiation therapy. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2009.Google Scholar
  37. 37.
    Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys. 1993;20:1709–19.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou J, Uhl B, Dewitt K, et al. Image-guided stereotactic body radiotherapy for lung tumors using bodyloc with tomotherapy: clinical implementation and set-up accuracy. Med Dosim. 2010;35(1):12–8. doi: 10.1016/j.meddos.2008.12.003. Epub 2009 Jan 30.PubMedCrossRefGoogle Scholar
  39. 39.
    Jin JY, Yin FF, Tenn SE, et al. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy. Med Dosim. 2008;33:124–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Chang Z, Wang Z, Wu QJ, et al. Dosimetric characteristics of novalis Tx system with high definition multileaf collimator. Med Phys. 2008;35:4460–3.PubMedCrossRefGoogle Scholar
  41. 41.
    Walls NM, Nurushev T, Jin JY, et al. Assessment of 2D X-ray and volumetric-based localization imaging for patients treated with SRS and SBRT. Int J Radiat Oncol Biol Phys. 2009;75:S-682.CrossRefGoogle Scholar
  42. 42.
    Adler Jr JR, Chang SD, Murphy MJ, et al. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997;69:124–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Fu D, Kuduvalli G. A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery. Med Phys. 2008;35:2180–94.PubMedCrossRefGoogle Scholar
  44. 44.
    Fu D, Kuduvalli G. Enhancing skeletal features in digitally reconstructed radiographs. In: Reinhardt JM, Pluim JP, editors. Medical imaging 2006: image processing. Vol 6144. San Diego: The International Society for Optical Engineering; 2006. p. Abstract 61442 M.Google Scholar
  45. 45.
    Fu D, Kuduvalli G, Maurer CJ, et al. 3D target localization using 2D local displacements of skeletal structures in orthogonal x-ray images for image-guided spinal radiosurgery. Int J CARS. 2006;1:198–200.Google Scholar
  46. 46.
    Ho AK, Fu D, Cotrutz C, et al. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery. 2007;60:ONS147–56. discussion ONS156.PubMedGoogle Scholar
  47. 47.
    Mu Z, Fu D, Kuduvally G. Multiple fiducial identification using the hidden Markov model in image guided radiosurgery. In: Proceedings of the conference on computer vision and pattern recognition workshop: IEEE. New York, June 17–22, 2006; pp. 0-7695-2646-7692/7606.Google Scholar
  48. 48.
    Murphy MJ. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys. 2002;29:334–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Chuang CF, Larson DA, Zytkovicz A, et al. Peripheral dose measurement for CyberKnife radiosurgery with upgraded linac shielding. Med Phys. 2008;35:1494–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Kothary N, Heit JJ, Louie JD, et al. Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J Vasc Interv Radiol. 2009;20:235–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Kothary N, Dieterich S, Louie JD, et al. Percutaneous implantation of fiducial markers for imaging-guided radiation therapy. AJR Am J Roentgenol. 2009;192:1090–6.PubMedCrossRefGoogle Scholar
  52. 52.
    West JB, Fitzpatrick JM, Toms SA, et al. Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 2001;48:810–6. discussion 816–817.PubMedGoogle Scholar
  53. 53.
    Mitchell H, Newton I. Medical photogrammetric measurement: overview and prospects. ISPRS J Photogramm. 2002;56:286–94.CrossRefGoogle Scholar
  54. 54.
    Yan D, Vicini F, Wong J, et al. Adaptive radiation therapy. Phys Med Biol. 1997;42:123–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Yan D, Wong J, Vicini F, et al. Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors. Int J Radiat Oncol Biol Phys. 1997;38:197–206.PubMedCrossRefGoogle Scholar
  56. 56.
    Kupelian PA, Ramsey C, Meeks SL, et al. Serial megavoltage CT imaging during external beam radiotherapy for non-small-cell lung cancer: observations on tumor regression during treatment. Int J Radiat Oncol Biol Phys. 2005;63:1024–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Ramsey CR, Langen KM, Kupelian PA, et al. A technique for adaptive image-guided helical tomotherapy for lung cancer. Int J Radiat Oncol Biol Phys. 2006;64:1237–44.PubMedCrossRefGoogle Scholar
  58. 58.
    Bissonnette JP, Purdie TG, Higgins JA, et al. Cone-beam computed tomographic image guidance for lung cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2009;73:927–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Onishi H, Araki T, Shirato H, et al. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer. 2004;101:1623–31.PubMedCrossRefGoogle Scholar
  60. 60.
    Guckenberger M, Wulf J, Mueller G, et al. Dose–response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys. 2009;74:47–54.PubMedCrossRefGoogle Scholar
  61. 61.
    Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18:240–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8:89–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300:1155–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Brenner DJ. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol. 2008;18:234–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Milano MT, Constine LS, Okunieff P. Normal tissue toxicity after small field hypofractionated stereotactic body radiation. Radiat Oncol. 2008;3:36.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Park C, Papiez L, Zhang S, et al. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:847–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Liu HH, Balter P, Tutt T, et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys. 2007;68:531–40.PubMedCrossRefGoogle Scholar
  68. 68.
    Leong J. Implementation of random positioning error in computerised radiation treatment planning systems as a result of fractionation. Phys Med Biol. 1987;32:327–34.PubMedCrossRefGoogle Scholar
  69. 69.
    Beckham WA, Keall PJ, Siebers JV. A fluence-convolution method to calculate radiation therapy dose distributions that incorporate random set-up error. Phys Med Biol. 2002;47:3465–73.PubMedCrossRefGoogle Scholar
  70. 70.
    Chetty IJ, Rosu M, McShan DL, et al. Accounting for center-of-mass target motion using convolution methods in Monte Carlo-based dose calculations of the lung. Med Phys. 2004;31:925–32.PubMedCrossRefGoogle Scholar
  71. 71.
    Keall PJ, Joshi S, Vedam SS, et al. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys. 2005;32:942–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Rosu M, Balter JM, Chetty IJ, et al. How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy? Med Phys. 2007;34:233–45.PubMedCrossRefGoogle Scholar
  73. 73.
    Wolthaus JW, Schneider C, Sonke JJ, et al. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int J Radiat Oncol Biol Phys. 2006;65:1560–71.PubMedCrossRefGoogle Scholar
  74. 74.
    Das IJ, Ding GX, Ahnesjo A. Small fields: nonequilibrium radiation dosimetry. Med Phys. 2008;35:206–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Reynaert N, van der Marck SC, Schaart DR, et al. Monte Carlo treatment planning for photon and electron beams. Rad Phys Chem. 2007;76:643–86.CrossRefGoogle Scholar
  76. 76.
    Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34:4818–53.CrossRefGoogle Scholar
  77. 77.
    Mackie TR, Scrimger JW, Battista JJ. A convolution method of calculating dose for 15-MV x rays. Med Phys. 1985;12:188–96.PubMedCrossRefGoogle Scholar
  78. 78.
    Timmerman RD, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for medically inoperable early-stage lung cancer patients: analysis of RTOG 0236. Int J Radiat Oncol Biol Phys. 2009;75:S3.CrossRefGoogle Scholar
  79. 79.
    Timmerman R, McGarry R, Yiannoutsos C, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 2006;24:4833–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Patel AH, Ajlouni M, Jin J, et al. Is stereotactic body radiotherapy (SBRT) safe for central non-small cell lung cancer (NSCLC) lesions? Int J Radiat Oncol Biol Phys. 2008;72:S434–5.CrossRefGoogle Scholar
  81. 81.
    Hiraoka M, Ishikura S. A Japan clinical oncology group trial for stereotactic body radiation therapy of non-small cell lung cancer. J Thorac Oncol. 2007;2:S115–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Hurkmans CW, Cuijpers JP, Lagerwaard FJ, et al. Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the quality assurance working party of the randomised phase III ROSEL study. Radiat Oncol. 2009;4:1.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Harsolia A, Hugo GD, Kestin LL, et al. Dosimetric advantages of four-dimensional adaptive image-guided radiotherapy for lung tumors using online cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;70:582–9.PubMedCrossRefGoogle Scholar
  84. 84.
    van Zwienen M, van Beek S, Belderbos J, et al. Anatomical changes during radiotherapy of lung cancer patients. Int J Radiat Oncol Biol Phys. 2008;72:S111.CrossRefGoogle Scholar
  85. 85.
    Britton KR, Starkschall G, Liu H, et al. Consequences of anatomic changes and respiratory motion on radiation dose distributions in conformal radiotherapy for locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;73:94–102.PubMedCrossRefGoogle Scholar
  86. 86.
    Kong FM, Frey KA, Quint LE, et al. A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer. J Clin Oncol. 2007;25:3116–23.PubMedCrossRefGoogle Scholar
  87. 87.
    Aerts HJ, Bosmans G, van Baardwijk AA, et al. Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys. 2008;71:1402–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Siewerdsen JH, Daly MJ, Bakhtiar B, et al. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phy. 2006;33:187–97.CrossRefGoogle Scholar
  89. 89.
    Godfrey DJ, Ren L, Yan H, et al. Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS). Med Phys. 2007;34:3374–84.PubMedCrossRefGoogle Scholar
  90. 90.
    Ren L, Godfrey DJ, Yan H, et al. Automatic registration between reference and on-board digital tomosynthesis images for positioning verification. Med Phys. 2008;35:664–72.PubMedCrossRefGoogle Scholar
  91. 91.
    Wijesooriya K, Weiss E, Dill V, et al. Quantifying the accuracy of automated structure segmentation in 4D CT images using a deformable image registration algorithm. Med Phys. 2008;35:1251–60.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Zhong H, Kim J, Chetty IJ. Analysis of deformable image registration accuracy using computational modeling. Med Phys. 2009;37:970–9.CrossRefGoogle Scholar
  93. 93.
    Heath E, Seuntjens J. A direct voxel tracking method for four-dimensional Monte Carlo dose calculations in deforming anatomy. Med Phys. 2006;33:434–45.PubMedCrossRefGoogle Scholar
  94. 94.
    Rosu M, Chetty IJ, Balter JM, et al. Dose reconstruction in deforming lung anatomy: dose grid size effects and clinical implications. Med Phys. 2005;32:2487–95.PubMedCrossRefGoogle Scholar
  95. 95.
    Siebers JV, Zhong H. An energy transfer method for 4D Monte Carlo dose calculation. Med Phys. 2008;35:4096–105.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kong FM, Ten Haken RK, Schipper MJ, et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys. 2005;63:324–33.PubMedCrossRefGoogle Scholar
  97. 97.
    Uematsu M, Shioda A, Tahara K, et al. Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients: a preliminary experience. Cancer. 1998;82:1062–70.PubMedCrossRefGoogle Scholar
  98. 98.
    Nyman J, Johansson KA, Hulten U. Stereotactic hypofractionated radiotherapy for stage I non-small cell lung cancer–mature results for medically inoperable patients. Lung Cancer. 2006;51:97–103.PubMedCrossRefGoogle Scholar
  99. 99.
    Nagata Y, Takayama K, Matsuo Y, et al. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys. 2005;63:1427–31.PubMedCrossRefGoogle Scholar
  100. 100.
    Onishi H, Shirato H, Nagata Y, et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol. 2007;2:S94–100.PubMedCrossRefGoogle Scholar
  101. 101.
    Videtic GM, Stephans K, Reddy C, et al. Intensity-modulated radiotherapy-based stereotactic body radiotherapy for medically inoperable early-stage lung cancer: excellent local control. Int J Radiat Oncol Biol Phys. 2010;77(2):344–9. doi: 10.1016/j.ijrobp.2009.05.004. Epub 2009 Sep 18.PubMedCrossRefGoogle Scholar
  102. 102.
    Fakiris AJ, McGarry RC, Yiannoutsos CT, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys. 2009;75:677–82.PubMedCrossRefGoogle Scholar
  103. 103.
    Baumann P, Nyman J, Lax I, et al. Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries. Acta Oncol. 2006;45:787–95.PubMedCrossRefGoogle Scholar
  104. 104.
    Lagerwaard FJ, Haasbeek CJ, Smit EF, et al. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008;70:685–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Farzan Siddiqui
    • 1
  • Indrin J. Chetty
    • 1
  • Munther Ajlouni
    • 1
  • Benjamin Movsas
    • 1
  1. 1.Department of Radiation OncologyHenry Ford Health SystemsDetroitUSA

Personalised recommendations