Tumor Ablation: An Evolving Technology

  • Muneeb Ahmed
  • Beenish Tasawwar
  • S. Nahum Goldberg
Reference work entry


Image-guided tumor ablation is a minimally invasive strategy to treat focal tumors by inducing irreversible cellular injury through the application of thermal, and more recently, nonthermal energy or chemical injection. This approach has become a widely accepted technique and is incorporated into the treatment of a range of clinical circumstances, including in the treatment of focal tumors in the liver, lung, kidney, bone, and adrenal glands. Given the multiplicity of treatment types and potential complexity of paradigms in oncology, and the wider application of thermal ablation techniques, a thorough understanding of the basic principles and recent advances in thermal ablation is a necessary prerequisite for their effective clinical use. This chapter will review several of these key concepts related to tumor ablation, including those that relate to performing a clinical ablation, such as understanding the goals of therapy and mechanisms of tissue heating or tumor destruction, and understanding the proper role of tumor ablation and the strategies that are being pursued to improve overall ablation outcome.


Thermal Ablation Liposomal Doxorubicin Ablation Zone Tumor Ablation Tumor Destruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gervais DA, et al. Renal cell carcinoma: clinical experience and technical success with radio-frequency ablation of 42 tumors. Radiology. 2003;226(2):417–24.CrossRefPubMedGoogle Scholar
  2. 2.
    Kurup AN, Callstrom MR. Ablation of skeletal metastases: current status. J Vasc Interv Radiol. 2010;21(8 suppl):S242–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Livraghi T, et al. Hepatocellular carcinoma: radiofrequency ablation of medium and large lesions. Radiology. 2000;214:761–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Solbiati L, et al. Percutaneous radiofrequency ablation of hepatic metastases from colorectal cancer: long term results in 117 patients. Radiology. 2001;221:159–66.CrossRefPubMedGoogle Scholar
  5. 5.
    Venkatesan AM, et al. Percutaneous ablation of adrenal tumors. Tech Vasc Interv Radiol. 2010;13(2):89–99.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stage I non-small cell lung cancer. J Am Coll Surg. 2010;211(1):68–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Ahmed M, et al. Principles of and advances in percutaneous ablation. Radiology. 2010;258(2):351–69.CrossRefGoogle Scholar
  8. 8.
    Dodd 3rd GD, et al. Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough. Radiographics. 2000;20(1):9–27.CrossRefPubMedGoogle Scholar
  9. 9.
    Shimada K, et al. Role of the width of the surgical margin in a hepatectomy for small hepatocellular carcinomas eligible for percutaneous local ablative therapy. Am J Surg. 2008;195(6):775–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Gervais DA, et al. Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol. 2005;185(1):64–71.CrossRefPubMedGoogle Scholar
  11. 11.
    Lencioni R, et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology. 2005;234(3):961–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Lencioni R, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9(7):621–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Goldberg SN, et al. Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. AJR Am J Roentgenol. 2002;179(1):93–101.CrossRefPubMedGoogle Scholar
  14. 14.
    Callstrom MR, Charboneau JW. Image-guided palliation of painful metastases using percutaneous ablation. Tech Vasc Interv Radiol. 2007;10(2):120–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Gillams A, et al. Radiofrequency ablation of neuroendocrine liver metastases: the Middlesex experience. Abdom Imaging. 2005;30(4):435–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Dodd 3rd GD, et al. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol. 2001;177(4):777–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Goldberg SN, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol. 2009;20(7 suppl):S377–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Schramm W, Yang D, Haemmerich D. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Conf Proc IEEE Eng Med Biol Soc. 2006;1:5013–6.PubMedGoogle Scholar
  19. 19.
    Ahmed M, et al. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation. Int J Hyperthermia. 2008;24(7):577–88.CrossRefPubMedGoogle Scholar
  20. 20.
    Thrall DE, et al. A comparison of temperatures in canine solid tumours during local and whole-body hyperthermia administered alone and simultaneously. Int J Hyperthermia. 1990;6(2):305–17.CrossRefPubMedGoogle Scholar
  21. 21.
    Seegenschmiedt M, Brady L, Sauer R. Interstitial thermoradiotherapy: review on technical and clinical aspects. Am J Clin Oncol. 1990;13:352–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Trembley B, Ryan T, Strohbehn J. Interstitial hyperthermia: physics, biology, and clinical aspects. Hyperth Oncol. 1992;3:11–98. Utrecht: VSP.Google Scholar
  23. 23.
    Larson T, Bostwick D, Corcia A. Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissues in patients with benign prostatic hyperplasia. Urology. 1996;47:463–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Zevas N, Kuwayama A. Pathologic analysis of experimental thermal lesions: comparison of induction heating and radiofrequency electrocoagulation. J Neurosurg. 1972;37:418–22.CrossRefGoogle Scholar
  25. 25.
    Goldberg SN, et al. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer. 2000;88:2452–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Goldberg SN, et al. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol. 1996;3:212–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Mertyna P, et al. Radiofrequency ablation: the effect of distance and baseline temperature on thermal dose required for coagulation. Int J Hyperthermia. 2008;24(7):550–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Mertyna P, et al. Radiofrequency ablation: variability in heat sensitivity in tumors and tissues. J Vasc Interv Radiol. 2007;18(5):647–54.CrossRefPubMedGoogle Scholar
  29. 29.
    Daniels C, Rubinsky B. Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues. J Biomech Eng. 2009;131(7):071006.CrossRefPubMedGoogle Scholar
  30. 30.
    Pennes H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1:93–122.PubMedGoogle Scholar
  31. 31.
    Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, technqiues, and diagnostic imaging guidance. Am J Radiol. 2000;174:323–31.Google Scholar
  32. 32.
    Goldberg SN, et al. Percutaneous radiofrequency tissue ablation: optimization of pulsed-RF technique to increase coagulation necrosis. JVIR. 1999;10:907–16.CrossRefPubMedGoogle Scholar
  33. 33.
    Goldberg SN, et al. Large-volume tissue ablation with radiofrequency by using a clustered, internally-cooled electrode technique: laboratory and clinical experience in liver metastases. Radiology. 1998;209:371–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Gulesserian T, et al. Comparison of expandable electrodes in percutaneous radiofrequency ablation of renal cell carcinoma. Eur J Radiol. 2006;59(2):133–9.CrossRefPubMedGoogle Scholar
  35. 35.
    McGahan JP, et al. Maximizing parameters for tissue ablation by using an internally cooled electrode. Radiology. 2010;256(2):397–405.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brace CL, et al. Radiofrequency ablation: simultaneous application of multiple electrodes via switching creates larger, more confluent ablations than sequential application in a large animal model. J Vasc Interv Radiol. 2009;20(1):118–24.CrossRefPubMedGoogle Scholar
  37. 37.
    Laeseke PF, et al. Multiple-electrode radiofrequency ablation creates confluent areas of necrosis: in vivo porcine liver results. Radiology. 2006;241(1):116–24.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Brace CL, et al. Radiofrequency ablation with a high-power generator: device efficacy in an in vivo porcine liver model. Int J Hyperthermia. 2007;23(4):387–94.CrossRefPubMedGoogle Scholar
  39. 39.
    Solazzo SA, et al. High-power generator for radiofrequency ablation: larger electrodes and pulsing algorithms in bovine ex vivo and porcine in vivo settings. Radiology. 2007;242(3):743–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Laeseke PF, et al. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol. 2009;20(9):1224–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Goldberg SN, et al. Radiofrequency tissue ablation using multiprobe arrays: greater tissue destruction than multiple probes operating alone. Acad Radiol. 1995;2:670–4.CrossRefPubMedGoogle Scholar
  42. 42.
    Bangard C, et al. Large-volume multi-tined expandable RF ablation in pig livers: comparison of 2D and volumetric measurements of the ablation zone. Eur Radiol. 2010;20(5):1073–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Rossi S, Buscarini E, Garbagnati F. Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. AJR Am J Roentgenol. 1998;170:1015–22.CrossRefPubMedGoogle Scholar
  44. 44.
    Siperstein AE, et al. Laparoscopic thermal ablation of hepatic neuroendocrine tumor metastases. Surgery. 1997;122:1147–55.CrossRefPubMedGoogle Scholar
  45. 45.
    Leveen RF. Laser hyperthermia and radiofrequency ablation of hepatic lesions. Semin Interv Radiol. 1997;12:313–24.Google Scholar
  46. 46.
    Appelbaum L, et al. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver. Radiology. 2010;254(2):430–40.CrossRefPubMedGoogle Scholar
  47. 47.
    McGahan JP, et al. Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol. 1996;3(5):418–22.CrossRefPubMedGoogle Scholar
  48. 48.
    Desinger K, et al. Interstitial bipolar RF-thermotherapy (REITT) therapy by planning by computer simulation and MRI-monitoring – a new concept for minimally invasive procedures. Proc SPIE. 1999;3249:147–60.CrossRefGoogle Scholar
  49. 49.
    Lee JM, et al. Bipolar radiofrequency ablation using wet-cooled electrodes: an in vitro experimental study in bovine liver. AJR Am J Roentgenol. 2005;184(2):391–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Seror O, et al. Large (>or = 5.0-cm) HCCs: multipolar RF ablation with three internally cooled bipolar electrodes – initial experience in 26 patients. Radiology. 2008;248(1):288–96.CrossRefPubMedGoogle Scholar
  51. 51.
    Lee JM, et al. Multiple-electrode radiofrequency ablation of in vivo porcine liver: comparative studies of consecutive monopolar, switching monopolar versus multipolar modes. Invest Radiol. 2007;42(10):676–83.CrossRefPubMedGoogle Scholar
  52. 52.
    Goldberg SN, et al. Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol. 1996;3:636–44.CrossRefPubMedGoogle Scholar
  53. 53.
    Hsieh CL, et al. Effectiveness of ultrasound-guided aspiration and sclerotherapy with 95 % ethanol for treatment of recurrent ovarian endometriomas. Fertil Steril. 2009;91(6):2709–13.CrossRefPubMedGoogle Scholar
  54. 54.
    Hines-Peralta A, et al. Hybrid radiofrequency and cryoablation device: preliminary results in an animal model. J Vasc Interv Radiol. 2004;15(10):1111–20.CrossRefPubMedGoogle Scholar
  55. 55.
    Tsai WL, et al. Clinical trial: percutaneous acetic acid injection versus percutaneous ethanol injection for small hepatocellular carcinoma - a long-term follow-up study. Aliment Pharmacol Ther 2008; 28(3):304–11.CrossRefPubMedGoogle Scholar
  56. 56.
    He N, et al. Microwave ablation: an experimental comparative study on internally cooled antenna versus non-internally cooled antenna in liver models. Acad Radiol. 2010;17(7):894–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Lu DS, et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol. 2003;14(10):1267–74.CrossRefPubMedGoogle Scholar
  58. 58.
    Patterson EJ, et al. Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Ann Surg. 1998;227(4):559–65.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Mostafa EM, et al. Optimal strategies for combining transcatheter arterial chemoembolization and radiofrequency ablation in rabbit VX2 hepatic tumors. J Vasc Interv Radiol. 2008;19(12):1740–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Goldberg SN, et al. Radio-frequency tissue ablation: effect of pharmacologic modulation of blood flow on coagulation diameter. Radiology. 1998;209(3):761–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Horkan C, et al. Radiofrequency ablation: effect of pharmacologic modulation of hepatic and renal blood flow on coagulation diameter in a VX2 tumor model. J Vasc Interv Radiol. 2004;15(3):269–74.CrossRefPubMedGoogle Scholar
  62. 62.
    Hakime A, et al. Combination of radiofrequency ablation with antiangiogenic therapy for tumor ablation efficacy: study in mice. Radiology. 2007;244(2):464–70.CrossRefPubMedGoogle Scholar
  63. 63.
    Lee EW, et al. Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology. 2010;255(2):426–33.CrossRefPubMedGoogle Scholar
  64. 64.
    Liu YJ, et al. Thermal characteristics of microwave ablation in the vicinity of an arterial bifurcation. Int J Hyperthermia. 2006;22(6):491–506.CrossRefPubMedGoogle Scholar
  65. 65.
    Aube C, et al. Influence of NaCl concentrations on coagulation, temperature, and electrical conductivity using a perfusion radiofrequency ablation system: an ex vivo experimental study. Cardiovasc Intervent Radiol. 2007;30(1):92–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Gillams AR, Lees WR. CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Intervent Radiol. 2005;28(4):476–80.CrossRefPubMedGoogle Scholar
  67. 67.
    Liu Z, et al. Radiofrequency tumor ablation: insight into improved efficacy using computer modeling. AJR Am J Roentgenol. 2005;184(4):1347–52.CrossRefPubMedGoogle Scholar
  68. 68.
    Laeseke PF, et al. Use of dextrose 5 % in water instead of saline to protect against inadvertent radiofrequency injuries. AJR Am J Roentgenol. 2005;184(3):1026–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Yang D, et al. Measurement and analysis of tissue temperature during microwave liver ablation. IEEE Trans Biomed Eng. 2007;54(1):150–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Yang D, et al. Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans Biomed Eng. 2007;54(8):1382–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Brace CL, et al. Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung. J Vasc Interv Radiol. 2010;21(8):1280–6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Isfort P, et al. [In vitro experiments on fluid-modulated microwave ablation]. Rofo. 2010;182(6):518–24.CrossRefPubMedGoogle Scholar
  73. 73.
    Ahmed M, et al. Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology. 2005;235(2):469–77.CrossRefPubMedGoogle Scholar
  74. 74.
    Horkan C, et al. Reduced tumor growth with combined radiofrequency ablation and radiation therapy in a rat breast tumor model. Radiology. 2005;235(1):81–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Ahmed M, Goldberg SN. Combination radiofrequency thermal ablation and adjuvant IV liposomal doxorubicin increases tissue coagulation and intratumoural drug accumulation. Int J Hyperthermia. 2004;20(7):781–802.CrossRefPubMedGoogle Scholar
  76. 76.
    Dupuy DE, et al. Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer. Chest. 2006;129(3):738–45.CrossRefPubMedGoogle Scholar
  77. 77.
    Goldberg SN, et al. Radiofrequency thermal ablation with adjuvant saline injection: effect of electrical conductivity on tissue heating and coagulation. Radiology. 2001;219:157–65.CrossRefPubMedGoogle Scholar
  78. 78.
    Gaber MH, et al. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys. 1996;36(5):1177–87.CrossRefPubMedGoogle Scholar
  79. 79.
    Negussie AH, et al. Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperthermia. 2011;27(2):140–55.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gasselhuber A, et al. Mathematical spatio-temporal model of drug delivery from low temperature sensitive liposomes during radiofrequency tumour ablation. Int J Hyperthermia. 2010;26(5):499–513.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Ahmed M, et al. Radiofrequency thermal ablation sharply increases intratumoral liposomal doxorubicin accumulation and tumor coagulation. Cancer Res. 2003;63(19):6327–33.PubMedGoogle Scholar
  82. 82.
    D’Ippolito G, et al. Percutaneous tumor ablation: reduced tumor growth with combined radio-frequency ablation and liposomal doxorubicin in a rat breast tumor model. Radiology. 2003;228(1):112–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Monsky WL, et al. Radio-frequency ablation increases intratumoral liposomal doxorubicin accumulation in a rat breast tumor model. Radiology. 2002;224(3):823–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Poon RT, Borys N. Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother. 2009;10(2):333–43.CrossRefPubMedGoogle Scholar
  85. 85.
    Solazzo S, et al. Liposomal doxorubicin increases radiofrequency ablation-induced tumor destruction by increasing cellular oxidative and nitrative stress and accelerating apoptotic pathways. Radiology. 2010;255:62–74.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Yang W, et al. Do liposomal apoptotic enhancers increase tumor coagulation and end-point survival in percutaneous radiofrequency ablation of tumors in a rat tumor model? Radiology. 2010;257(3):685–96.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ahrar K, et al. Dr. Gary J. Becker Young Investigator Award: relative thermosensitivity of cytotoxic drugs used in transcatheter arterial chemoembolization. J Vasc Interv Radiol. 2004;15(9):901–5.CrossRefPubMedGoogle Scholar
  88. 88.
    Kim JH, et al. Medium-sized (3.1–5.0 cm) hepatocellular carcinoma: transarterial chemoembolization plus radiofrequency ablation versus radiofrequency ablation alone. Ann Surg Oncol. 2011;18:1624–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Morimoto M, et al. Midterm outcomes in patients with intermediate-sized hepatocellular carcinoma: a randomized controlled trial for determining the efficacy of radiofrequency ablation combined with transcatheter arterial chemoembolization. Cancer. 2010;116(23):5452–60.CrossRefPubMedGoogle Scholar
  90. 90.
    Chan MD, et al. Combined radiofrequency ablation and high-dose rate brachytherapy for early-stage non-small-cell lung cancer. Brachytherapy. 2011;10:253–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Grieco CA, et al. Percutaneous image-guided thermal ablation and radiation therapy: outcomes of combined treatment for 41 patients with inoperable stage I/II non-small-cell lung cancer. J Vasc Interv Radiol. 2006;17(7):1117–24.CrossRefPubMedGoogle Scholar
  92. 92.
    Algan O, et al. External beam radiotherapy and hyperthermia in the treatment of patients with locally advanced prostate carcinoma. Cancer. 2000;89(2):399–403.CrossRefPubMedGoogle Scholar
  93. 93.
    Solazzo S, et al. RF ablation with adjuvant therapy: comparison of external beam radiation and liposomal doxorubicin on ablation efficacy in an animal tumor model. Int J Hyperthermia. 2008;24(7):560–7.CrossRefPubMedGoogle Scholar
  94. 94.
    Mayer R, et al. Hyperbaric oxygen and radiotherapy. Strahlenther Onkol. 2005;181(2):113–23.CrossRefPubMedGoogle Scholar
  95. 95.
    Wood BJ, et al. Navigation systems for ablation. J Vasc Interv Radiol. 2010;21(8 suppl):S257–63.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Krucker J, et al. Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol. 2007;18(9):1141–50.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Klauser AS, et al. Fusion of real-time US with CT images to guide sacroiliac joint injection in vitro and in vivo. Radiology. 2010;256(2):547–53.CrossRefPubMedGoogle Scholar
  98. 98.
    Khan MF, et al. Navigation-based needle puncture of a cadaver using a hybrid tracking navigational system. Invest Radiol. 2006;41(10):713–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Muneeb Ahmed
    • 1
  • Beenish Tasawwar
    • 2
  • S. Nahum Goldberg
    • 3
  1. 1.Department of Radiology, WCC 308-BBeth Israel Deaconess Medical Center, Section of Interventional RadiologyBostonUSA
  2. 2.Department of RadiologyBeth Israel Deaconess Medical Center, Harvard Medical School Section of Interventional RadiologyBostonUSA
  3. 3.Department of RadiologyHebrew University-Hadassah Medical CenterJerusalemIsrael

Personalised recommendations