Imaging of Interventional Therapies in Oncology: Magnetic Resonance Imaging

  • Servet Tatli
  • Stuart G. Silverman
Reference work entry


MRI is one of the main pillars of oncologic imaging and plays a vital role in the care of patients with cancer. Due to intrinsic proprieties such as superior soft tissue contrast resolution, multiplanar capability, functional imaging ability, and lack of ionizing radiation, MRI has become indispensible in the management of oncologic diseases. As the technology advances, its role will continue to expand at virtually every stage of patient care. In this chapter, we review the essential features of MRI in oncologic imaging and discuss the clinical use of MRI in the diagnosis, staging, treatment, and surveillance of common oncologic diseases. We also discuss recent and forthcoming advances in oncologic MRI.


Nephrogenic Systemic Fibrosis Oncologic Imaging Multiplanar Capability Central Nervous System Cancer Soft Tissue Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tatli S, Morrison PR, Tuncali K, Silverman SG. Interventional MRI for oncologic applications. Tech Vasc Interv Radiol. 2007;10(2):159–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Kanal E, Shellock FG, Talagala L. Safety considerations in MR imaging. Radiology. 1990;176(3):593–606.PubMedCrossRefGoogle Scholar
  4. 4.
    Kanal E, Borgstede JP, Barkovich AJ, American College of Radiology, et al. American College of Radiology white paper on MR safety. AJR Am J Roentgenol. 2002;178(6):1335–47.PubMedCrossRefGoogle Scholar
  5. 5.
    Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356(9234):1000–1.PubMedCrossRefGoogle Scholar
  6. 6.
    Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17(9):2359–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Shellock FG, Spinazzi A. MRI safety update 2008: part 1, MRI contrast agents and nephrogenic systemic fibrosis. AJR Am J Roentgenol. 2008;191(4):1129–39.PubMedCrossRefGoogle Scholar
  8. 8.
    Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol. 2006;27:475–87.PubMedGoogle Scholar
  9. 9.
    Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics. 2000;20(6):1721–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Thurnher MM, Law M. Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am. 2009;17(2):225–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Caldemeyer KS, Mathews VP, Righi PD, Smith RR. Imaging features and clinical significance of perineural spread or extension of head and neck tumors. Radiographics. 1998;18(1):97–110.PubMedCrossRefGoogle Scholar
  12. 12.
    Ginsberg LE. MR imaging of perineural tumor spread. Magn Reson Imaging Clin N Am. 2002;10(3):511–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Yeh ED. Breast magnetic resonance imaging: current clinical indications. Magn Reson Imaging Clin N Am. 2010;18(2):155–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Fischer U, Kopka L, Grabbe E. Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology. 1999;213:881–8.PubMedCrossRefGoogle Scholar
  15. 15.
    American College of Radiology. Accessed 1 Dec 2010.
  16. 16.
    American Cancer Society, Cancer Facts & Figures 2010. Accessed 1 Dec 2010.
  17. 17.
    Antoch G, Stattaus J, Nemat AT, et al. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology. 2003;229:526–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Godelman A, Haramati LB. MR imaging in diagnosis and staging of pulmonary carcinoma. Magn Reson Imaging Clin N Am. 2008;16(2):309–17.PubMedCrossRefGoogle Scholar
  19. 19.
    Syed IS, Feng D, Harris SR, et al. MR imaging of cardiac masses. Magn Reson Imaging Clin N Am. 2008;16(2):137–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Hoffmann U, Globits S, Schima W, et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol. 2003;92(7):890–5.PubMedCrossRefGoogle Scholar
  21. 21.
    El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134(6):1752–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Semelka RC, Martin DR, Balci C, Lance T. Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging. 2001;13(3):397–401.PubMedCrossRefGoogle Scholar
  23. 23.
    Barish MA, Yucel EK, Ferrucci JT. Magnetic resonance cholangiopancreatography. N Engl J Med. 1999;341(4):258–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Sahni VA, Mortele KJ. Magnetic resonance cholangiopancreatography: current use and future applications. Clin Gastroenterol Hepatol. 2008;6(9):967–77.PubMedCrossRefGoogle Scholar
  25. 25.
    Federle M, Chezmar J, Rubin D, et al. Efficacy and safety of mangafodipir trisodium (MnDPDP) injection for hepatic MRI in adults: results of the U.S. multicenter phase III clinical trials. Efficacy of early imaging. J Magn Reson Imaging. 2000;12(5):689–701.PubMedCrossRefGoogle Scholar
  26. 26.
    Hagspiel KD, Neidl KF, Eichenberger AC, Weder W, Marincek B. Detection of liver metastases: comparison of superparamagnetic iron oxide-enhanced and unenhanced MR imaging at 1.5 T with dynamic CT, intraoperative US, and percutaneous US. Radiology. 1995;196(2):471–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Nakayama M, Yamashita Y, Mitsuzaki K, Yi T, Arakawa A, Katahira K, Nakayama Y, Takahashi M. Improved tissue characterization of focal liver lesions with ferumoxide-enhanced T1 and T2-weighted MR imaging. J Magn Reson Imaging. 2000;11(6):647–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Reimer P, Rummeny EJ, Daldrup HE, Hesse T, Balzer T, Tombach B, Peters PE. Enhancement characteristics of liver metastases, hepatocellular carcinomas, and hemangiomas with Gd-EOB-DTPA: preliminary results with dynamic MR imaging. Eur Radiol. 1997;7(2):275–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Runge VM. A comparison of two MR hepatobiliary gadolinium chelates: Gd-BOPTA and Gd-EOB-DTPA. J Comput Assist Tomogr. 1998;22(4):643–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Ji H, Ros PR. Magnetic resonance imaging. Liver-specific contrast agents. Clin Liver Dis. 2002;6(1):73–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Sauer R, Fietkau R, Wittekind C, German Rectal Cancer Group, et al. Adjuvant vs. neoadjuvant radiochemotherapy for locally advanced rectal cancer: the German trial CAO/ARO/AIO-94. Colorectal Dis. 2003;5:406–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Tatli S, Mortele KJ, Breen EL, Bleday R, Silverman SG. Local staging of rectal cancer using combined pelvic phased-array and endorectal coil MRI. J Magn Reson Imaging. 2006;23(4):534–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Eisner BH, Kurtz MP, Harisinghani MG. Evolving role of magnetic resonance imaging in renal cancer imaging. J Endourol. 2010;24(5):707–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Silverman SG, Israel GM, Herts BR, Richie JP. Management of the incidental renal mass. Radiology. 2008;249(1):16–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Jacobs BL, Lee CT, Montie JE. Bladder cancer in 2010: how far have we come? CA Cancer J Clin. 2010;60(4):244–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Silverman SG, Leyendecker JR, Amis Jr ES. What is the current role of CT urography and MR urography in the evaluation of the urinary tract? Radiology. 2009;250(2):309–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Setty BN, Holalkere NS, Sahani DV, Uppot RN, Harisinghani M, Blake MA. State-of-the-art cross-sectional imaging in bladder cancer. Curr Probl Diagn Radiol. 2007;36(2):83–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Tekes A, Kamel I, Imam K, et al. Dynamic MRI of bladder cancer: evaluation of staging accuracy. AJR Am J Roentgenol. 2005;184(1):121–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Hussain HK, Korobkin M. MR imaging of the adrenal glands. Magn Reson Imaging Clin N Am. 2004;12(3):515–44.PubMedCrossRefGoogle Scholar
  40. 40.
    Korobkin M. Overview of imaging/CT. Urol Radiol. 1989;4:221–6.CrossRefGoogle Scholar
  41. 41.
    Mayo-Smith WW, Lee MJ, McNicholas MMJ, Hahn PF, Boland GW, Saini S. Characterization of masses (<5 cm) by use of chemical shift MR imaging Observer performance versus quantitative measure. Am J Roentgenol. 1995;165(1):91–5.CrossRefGoogle Scholar
  42. 42.
    Outwater EK, Siegelman ES, Radecki PD, Piccoli CW, Mitchell DG. Distinction between benign and malignant adrenal masses: value of T1-weighted chemical-shift MR imaging. AJR Am J Roentgenol. 1995;165(3):579–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Hricak H, White S, Vigneron D, et al. Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal–pelvic phased-array coils. Radiology. 1994;193(3):703–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Shimofusa R, Fujimoto H, Akamata H, Motoori K, Yamamoto S, Ueda T, Ito H. Diffusion-weighted imaging of prostate cancer. J Comput Assist Tomogr. 2005;29(2):149–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Lim HK, Kim JK, Kim KA, Cho KS. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection – a multireader study. Radiology. 2009;250(1):145–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Jager GJ, Ruijter ET, van de Kaa CA, et al. Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology. 1997;203(3):645–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Engelbrecht MR, Huisman HJ, Laheij RJ, et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology. 2003;229(1):248–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Amant F, Moerman P, Neven P, et al. Endometrial cancer. Lancet. 2005;366(9484):491–505.PubMedCrossRefGoogle Scholar
  49. 49.
    Frei KA, Kinkel K, Bonél HM, Lu Y, Zaloudek C, Hricak H. Prediction of deep myometrial invasion in patients with endometrial cancer: clinical utility of contrast-enhanced MR imaging-a meta-analysis and Bayesian analysis. Radiology. 2000;216(2):444–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Hricak H, Gatsonis C, Chi DS, American College of Radiology Imaging Network 6651, Gynecologic Oncology Group 183, et al. Role of imaging in pretreatment evaluation of early invasive cervical cancer: results of the intergroup study American College of Radiology Imaging Network 6651-Gynecologic Oncology Group 183. J Clin Oncol. 2005;23(36):9329–37.PubMedCrossRefGoogle Scholar
  51. 51.
    Hricak H, Gatsonis C, Coakley FV, et al. Early invasive cervical cancer: CT and MR imaging in preoperative evaluation – ACRIN/GOG comparative study of diagnostic performance and interobserver variability. Radiology. 2007;245(2):491–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Rieber A, Nüssle K, Stöhr I, et al. Preoperative diagnosis of ovarian tumors with MR imaging: comparison with transvaginal sonography, positron emission tomography, and histologic findings. AJR Am J Roentgenol. 2001;177(1):123–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Hricak H, Chen M, Coakley FV, et al. Complex adnexal masses: detection and characterization with MR imaging–multivariate analysis. Radiology. 2000;214(1):39–46.PubMedCrossRefGoogle Scholar
  54. 54.
    Ma LD. Magnetic resonance imaging of musculoskeletal tumors: skeletal and soft tissue masses. Curr Probl Diagn Radiol. 1999;28(2):29–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Alyas F, James SL, Davies AM, Saifuddin A. The role of MR imaging in the diagnostic characterisation of appendicular bone tumours and tumour-like conditions. Eur Radiol. 2007;17(10):2675–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Wootton-Gorges SL. MR imaging of primary bone tumors and tumor-like conditions in children. Magn Reson Imaging Clin N Am. 2009;17(3):469–87.PubMedCrossRefGoogle Scholar
  57. 57.
    Hagspiel KD, Kandarpa K, Jolesz FA. Interventional MR imaging. J Vasc Interv Radiol. 1997;8:745–58.PubMedCrossRefGoogle Scholar
  58. 58.
    McDannold NJ, Jolesz FA. Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging. 2000;11:191–202.PubMedCrossRefGoogle Scholar
  59. 59.
    Hynynen K, Kettenbach J, Kacher DF, et al. Interventional and intraoperative magnetic resonance imaging. Annu Rev Biomed Eng. 2000;2:661–90.CrossRefGoogle Scholar
  60. 60.
    Lu DS, Lee H, Farahani K, et al. Biopsy of hepatic dome lesions: semi-real-time coronal MR guidance technique. AJR Am J Roentgenol. 1997;168:737–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Silverman SG, Tuncali K, Morrison PR. MR Imaging-guided percutaneous tumor ablation. Acad Radiol. 2005;12:1100–19.PubMedCrossRefGoogle Scholar
  62. 62.
    Morrison PR, Silverman SG, Tuncali K, Tatli S. MRI-guided cryotherapy. J Magn Reson Imaging. 2008;27(2):410–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K. MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology. 2003;226(3):897–905.PubMedCrossRefGoogle Scholar
  64. 64.
    Tuncali K, Morrison PR, Tatli S, Silverman SG. MRI-guided percutaneous cryoablation of renal tumors: use of external manual displacement of adjacent bowel loops. Eur J Radiol. 2006;59(2):198–202.PubMedCrossRefGoogle Scholar
  65. 65.
    Silverman SG, Jolesz FA, Newman RW, et al. Design and implementation of an interventional MR imaging suite. AJR Am J Roentgenol. 1997;168:1465–71.PubMedCrossRefGoogle Scholar
  66. 66.
    Silverman SG, Collick BD, Figueira MR, et al. Interactive MR-guided biopsy in an open-configuration MR imaging system. Radiology. 1995;197:175–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Wallis F, Gilbert FJ. Magnetic resonance imaging in oncology: an overview. J R Coll Surg Edinb. 1999;44(2):117–25.PubMedGoogle Scholar
  68. 68.
    Salomonowitz E. MR imaging-guided biopsy and therapeutic intervention in a closed-configuration magnet: single-center series of 361 punctures. AJR Am J Roentgenol. 2001;177:159–63.PubMedCrossRefGoogle Scholar
  69. 69.
    Solomon SB, Silverman SG. Imaging in interventional oncology. Radiology. 2010;257(3):624–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Fenchel S, Boll DT, Lewin JS. Intraoperative MR imaging. Magn Reson Imaging Clin N Am. 2003;11(3):431–47.PubMedCrossRefGoogle Scholar
  71. 71.
    Johnston T, Moser R, Moeller K, Moriarty TM. Intraoperative MRI: safety. Neurosurg Clin N Am. 2009;20(2):147–53.PubMedCrossRefGoogle Scholar
  72. 72.
    Jolesz FA, Morrison PR, Koran SJ, et al. Compatible instrumentation for intraoperative MRI: expanding resources. J Magn Reson Imaging. 1998;8:8–11.PubMedCrossRefGoogle Scholar
  73. 73.
    Keeler EK, Casey FX, Engels H, et al. Accessory equipment considerations with respect to MRI compatibility. J Magn Reson Imaging. 1998;8:12–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Bedrosian I, Schlencker J, Spitz FR, et al. Magnetic resonance imaging-guided biopsy of mammographically and clinically occult breast lesions. Ann Surg Oncol. 2002;9(5):457–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Liberman L, Bracero N, Morris E, Thornton C, Dershaw DD. MRI-guided 9-gauge vacuum-assisted breast biopsy: initial clinical experience. AJR Am J Roentgenol. 2005;185(1):183–93.PubMedCrossRefGoogle Scholar
  76. 76.
    Kuhl CK, Morakkabati N, Leutner CC, et al. MR imaging–guided large-core (14-gauge) needle biopsy of small lesions visible at breast MR imaging alone. Radiology. 2001;220:31–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Perlet C, Heywang-Kobrunner SH, Heinig A, et al. Magnetic resonance-guided, vacuum-assisted breast biopsy: results from a European multicenter study of 538 lesions. Cancer. 2006;106:982–90.PubMedCrossRefGoogle Scholar
  78. 78.
    Hata N, Jinzaki M, Kacher D, et al. MR imaging-guided prostate biopsy with surgical navigation software: device validation and feasibility. Radiology. 2001;220(1):263–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Cormack RA, D’Amico AV, Hata N, Silverman S, Weinstein M, Tempany CM. Feasibility of transperineal prostate biopsy under interventional magnetic resonance guidance. Urology. 2000;56(4):663–4.PubMedCrossRefGoogle Scholar
  80. 80.
    D’Amico AV, Tempany CM, Cormack R, et al. Transperineal magnetic resonance image guided prostate biopsy. J Urol. 2000;164:385–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Lichy MP, Anastasiadis AG, Aschoff P, et al. Morphologic, functional, and metabolic magnetic resonance imaging-guided prostate biopsy in a patient with prior negative transrectal ultrasound-guided biopsies and persistently elevated prostate-specific antigen levels. Urology. 2007;69(6):1208.e5–8.CrossRefGoogle Scholar
  82. 82.
    Buchanan CL, Morris EA, Dorn PL, et al. Utility of breast magnetic resonance imaging in patients with occult primary breast cancer. Ann Surg Oncol. 2005;12:1045–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Eby PR, Lehman C. MRI-guided breast interventions. Semin Ultrasound CT MR. 2006;27:339–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Meeuwis C, Peters NH, Mali WP, et al. Targeting difficult accessible breast lesions: MRI-guided needle localization using a freehand technique in a 3.0 T closed bore magnet. Eur J Radiol. 2007;62:283–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Bloom S, Morrow M. A clinical oncologic perspective on breast magnetic resonance imaging. Magn Reson Imaging Clin N Am. 2010;18(2):277–94.PubMedCrossRefGoogle Scholar
  86. 86.
    Philpotts LE. MR intervention: indications, technique, correlation and histologic. Magn Reson Imaging Clin N Am. 2010;18(2):323–32.PubMedCrossRefGoogle Scholar
  87. 87.
    Ellis JH, Tempany C, Sarin MS, Gatsonis C, Rifkin MD, McNeil BJ. MR imaging and sonography of early prostatic cancer: pathologic and imaging features that influence identification and diagnosis. AJR Am J Roentgenol. 1994;162(4):865–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Haker SJ, Mulkern RV, Roebuck JR, Barnes AS, Dimaio S, Hata N, Tempany CM. Magnetic resonance-guided prostate interventions. Top Magn Reson Imaging. 2005;16(5):355–68.PubMedCrossRefGoogle Scholar
  89. 89.
    Zangos S, Herzog C, Eichler K, et al. MR-compatible assistance system for punction in a high-field system: device and feasibility of transgluteal biopsies of the prostate gland. Eur Radiol. 2007;17:1118–24.PubMedCrossRefGoogle Scholar
  90. 90.
    Barnes AS, Haker SJ, Mulkern RV, et al. Magnetic resonance spectroscopy-guided transperineal prostate biopsy and brachytherapy for recurrent prostate cancer. Urology. 2005;66:1319.PubMedGoogle Scholar
  91. 91.
    Susil RC, Menard C, Krieger A, et al. Transrectal prostate biopsy and fiducial marker placement in a standard 1.5 T magnetic resonance imaging scanner. J Urol. 2006;175:113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Fennessy FM, Tuncali K, Morrison PR, Tempany CM. MR imaging-guided interventions in the genitourinary tract: an evolving concept. Magn Reson Imaging Clin N Am. 2010;18(1):11–28.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Zhang Q, Chung YC, Lewin JS, Duerk JL. A method for simultaneous RF ablation and MRI. J Magn Reson Imaging. 1998;8(1):110–14.PubMedCrossRefGoogle Scholar
  94. 94.
    Silverman SG, Tuncali K, Adams DF, et al. MR imaging-guided percutaneous cryotherapy of liver tumors: initial experience. Radiology. 2000;217:657–64.PubMedCrossRefGoogle Scholar
  95. 95.
    Silverman SG, Tuncali K, vanSonnenberg E, et al. Renal tumors: MR imaging-guided percutaneous cryotherapy – initial experience in 23 patients. Radiology. 2005;236:716–24.PubMedCrossRefGoogle Scholar
  96. 96.
    Han KR, Cohen JK, Miller RJ, et al. Treatment of organ confined prostate cancer with third generation cryosurgery: preliminary multicenter experience. J Urol. 2003;170:1126–30.PubMedCrossRefGoogle Scholar
  97. 97.
    Nurko J, Mabry CD, Whitworth P, et al. Interim results from the FibroAdenoma Cryoablation Treatment Registry. Am J Surg. 2005;190:647–51.PubMedCrossRefGoogle Scholar
  98. 98.
    Tuncali K, Morrison PR, Winalski CS, et al. MRI-guided percutaneous cryotherapy for soft-tissue and bone metastases: initial experience. AJR Am J Roentgenol. 2007;189:232–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Sakuhara Y, Shimizu T, Kodama Y, et al. Magnetic resonance-guided percutaneous cryoablation of uterine fibroids: early clinical experiences. Cardiovasc Intervent Radiol. 2006;29:552–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Cline HE, Schenck JF, Hynynen K, et al. MR-guided focused ultrasound surgery. J Comput Assist Tomogr. 1992;16:956–65.PubMedCrossRefGoogle Scholar
  101. 101.
    Cline HE, Hynynen K, Hardy CJ, et al. MR temperature mapping of focused ultrasound surgery. Magn Reson Med. 1994;31:628–36.PubMedCrossRefGoogle Scholar
  102. 102.
    Tempany CM, Stewart EA, McDannold N, et al. MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology. 2003;226:897–905.PubMedCrossRefGoogle Scholar
  103. 103.
    Mulkern RV, Panych LP, McDannold NJ, et al. Tissue temperature monitoring with multiple gradient-echo imaging sequences. J Magn Reson Imaging. 1998;8:493–502.PubMedCrossRefGoogle Scholar
  104. 104.
    Kuroda K, Oshio K, Chung AH, et al. Temperature mapping using the water proton chemical shift: a chemical shift selective phase mapping method. Magn Reson Med. 1997;38:845–51.PubMedCrossRefGoogle Scholar
  105. 105.
    Jolesz FA, Hynynen K, McDannold N, et al. MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am. 2005;13:545–60.PubMedCrossRefGoogle Scholar
  106. 106.
    Hynynen K, Pomeroy O, Smith DN, et al. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology. 2001;219:176–85.PubMedCrossRefGoogle Scholar
  107. 107.
    Zippel DB, Papa MZ. The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review. Breast Cancer. 2005;12:32–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Fennessy FM, Tempany CM, McDannold NJ, et al. Uterine leiomyomas: MR imaging-guided focused ultrasound surgery – results of different treatment protocols. Radiology. 2007;243:885–93.PubMedCrossRefGoogle Scholar
  109. 109.
    Catane R, Beck A, Inbar Y, Rabin T, Shabshin N, Hengst S, Pfeffer RM, Hanannel A, Dogadkin O, Liberman B, Kopelman D. MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases – preliminary clinical experience. Ann Oncol. 2007;18(1):163–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Gianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M. Palliative treatment of painful bone metastases with MR imaging – guided focused ultrasound. Radiology. 2008;249(1):355–63.PubMedCrossRefGoogle Scholar
  111. 111.
    Watkin NA, Morris SB, Rivens IH, et al. High-intensity focused ultrasound ablation of the kidney in a large animal model. J Endourol. 1997;11:191–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Kopelman D, Inbar Y, Hanannel A, et al. Magnetic resonance-guided focused ultrasound surgery (MRgFUS): ablation of liver tissue in a porcine model. Eur J Radiol. 2006;59:157–62.PubMedCrossRefGoogle Scholar
  113. 113.
    McDannold N, Moss M, Killiany R, et al. MRI-guided focused ultrasound surgery in the brain: tests in a primate model. Magn Reson Med. 2003;49:1188–91.PubMedCrossRefGoogle Scholar
  114. 114.
    Nag S, Cardenes H, Chang S, Image-Guided Brachytherapy Working Group, et al. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group. Int J Radiat Oncol Biol Phys. 2004;60(4):1160–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Cormack RA. Quality assurance issues for computed tomography-, ultrasound-, and magnetic resonance imaging-guided brachytherapy. Int J Radiat Oncol Biol Phys. 2008;71(1 Suppl):S136–41.PubMedCrossRefGoogle Scholar
  116. 116.
    Stokes SH. Comparison of biochemical disease-free survival of patients with localized carcinoma of the prostate undergoing radical prostatectomy, transperineal ultrasound-guided radioactive seed implantation, or definitive external beam irradiation. Int J Radiat Oncol Biol Phys. 2000;47:129–36.PubMedCrossRefGoogle Scholar
  117. 117.
    Pfeiffer D, Sutlief S, Feng W, Pierce HM, Kofler J. AAPM Task Group 128: quality assurance tests for prostate brachytherapy ultrasound systems. Med Phys. 2008;35(12):5471–89.PubMedCrossRefGoogle Scholar
  118. 118.
    D’amico AV, Tempany CM, Schultz D, et al. Comparing PSA outcome after radical prostatectomy or magnetic resonance imaging-guided partial prostatic irradiation in select patients with clinically localized adenocarcinoma of the prostate. Urology. 2003;62:1063–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Talcott JA, Clark JA, Stark PC, et al. Long-term treatment related complications of brachytherapy for early prostate cancer: a survey of patients previously treated. J Urol. 2001;166:494–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Hurwitz MD, Cormack R, Tempany CM, et al. Three-dimensional real-time magnetic resonance-guided interstitial prostate brachytherapy optimizes radiation dose distribution resulting in a favorable acute side-effect profile in patients with clinically localized prostate cancer. Tech Urol. 2000;6:89–94.PubMedGoogle Scholar
  121. 121.
    D’Amico AV, Cormack RA, Tempany CM. MRI-guided diagnosis and treatment of prostate cancer. N Engl J Med. 2001;344:776–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Cormack RA, Kooy H, Tempany CM, et al. A clinical method for real-time dosimetric guidance of transperineal 125I prostate implants using interventional magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2000;46:207–14.PubMedCrossRefGoogle Scholar
  123. 123.
    D’Amico AV, Cormack R, Tempany CM, et al. Real-time magnetic resonance image-guided interstitial brachytherapy in the treatment of select patients with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 1998;42:507–15.PubMedCrossRefGoogle Scholar
  124. 124.
    Mislow JM, Golby AJ, Black PM. Origins of intraoperative MRI. Neurosurg Clin N Am. 2009;20(2):137–46.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Black PM, Moriarty T, Alexander 3rd E, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41(4):831–42.PubMedCrossRefGoogle Scholar
  126. 126.
    Schwartz RB, Hsu L, Wong TZ, et al. Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology. 1999;211(2):477–88.PubMedCrossRefGoogle Scholar
  127. 127.
    Pergolizzi Jr RS, Nabavi A, Schwartz RB, et al. Intra-operative MR guidance during trans-sphenoidal pituitary resection: preliminary results. J Magn Reson Imaging. 2001;13(1):136–41.PubMedCrossRefGoogle Scholar
  128. 128.
    Bootz F, Schulz T, Weber A, Scheffler B, Keiner S. The use of open MRI in otorhinolaryngology: initial experience. Comput Aided Surg. 2001;6(5):297–304.PubMedCrossRefGoogle Scholar
  129. 129.
    Schulz T, Schneider JP, Bootz F, et al. Transnasal and transsphenoidal MRI-guided biopsies of petroclival tumors. J Magn Reson Imaging. 2001;13(1):3–11.PubMedCrossRefGoogle Scholar
  130. 130.
    Dort JC, Sutherland GR. Intraoperative magnetic resonance imaging for skull base surgery. Laryngoscope. 2001;111(9):1570–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Fried MP, Topulos G, Hsu L, et al. Endoscopic sinus surgery with magnetic resonance imaging guidance: initial patient experience. Otolaryngol Head Neck Surg. 1998;119(4):374–80.PubMedCrossRefGoogle Scholar
  132. 132.
    Gould SW, Lamb G, Lomax D, Gedroyc W, Darzi A. Interventional MR-guided excisional biopsy of breast lesions. J Magn Reson Imaging. 1998;8(1):26–30.PubMedCrossRefGoogle Scholar
  133. 133.
    Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.CrossRefGoogle Scholar
  134. 134.
    Klaeser B, Mueller MD, Schmid RA, Guevara C, Krause T, Wiskirchen J. PET-CT-guided interventions in the management of FDG-positive lesions in patients suffering from solid malignancies: initial experience. Eur Radiol. 2009;19:1780–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Selzner M, Hany TF, Wildbrett P, McCormack L, Kadry Z, Clavien PA. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg. 2004;240(6):1027–34.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Tatli S, Gerbaudo VH, Mamede M, Tuncali K, Shyn PB, Silverman SG. Abdominal masses sampled at PET/CT-guided percutaneous biopsy: initial experience with registration of prior PET/CT images. Radiology. 2010;256(1):305–11.PubMedCrossRefGoogle Scholar
  137. 137.
    Soher BJ, Dale BM, Merkle EM. A review of MR physics: 3 T versus 1.5 T. Magn Reson Imaging Clin N Am. 2007;15(3):277–90.PubMedCrossRefGoogle Scholar
  138. 138.
    DeLano MC, Fisher C. 3 T MR imaging of the brain. Magn Reson Imaging Clin N Am. 2006;14(1):77–88.PubMedCrossRefGoogle Scholar
  139. 139.
    Nagae-Poetscher LM, Jiang H, Wakana S, Golay X, van Zijl PC, Mori S. High-resolution diffusion tensor imaging of the brain stem at 3 T. AJNR Am J Neuroradiol. 2004;25(8):1325–30.PubMedGoogle Scholar
  140. 140.
    Ramnath RR. 3 T MR imaging of the musculoskeletal system (Part II): clinical applications. Magn Reson Imaging Clin N Am. 2006;14(1):41–62.PubMedCrossRefGoogle Scholar
  141. 141.
    Sosna J, Pedrosa I, Dewolf WC, Mahallati H, Lenkinski RE, Rofsky NM. MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol. 2004;11(8):857–62.PubMedCrossRefGoogle Scholar
  142. 142.
    Bammer R, Schoenberg SO. Current concepts and advances in clinical parallel magnetic resonance imaging. Top Magn Reson Imaging. 2004;15(3):129–58.PubMedCrossRefGoogle Scholar
  143. 143.
    Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a user’s guide. Radiographics. 2005;25(5):1279–97.PubMedCrossRefGoogle Scholar
  144. 144.
    Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging. 2002;16(4):407–22.PubMedCrossRefGoogle Scholar
  145. 145.
    Kwee TC, Takahara T, Klomp DW, Luijten PR. Cancer imaging: novel concepts in clinical magnetic resonance imaging. J Intern Med. 2010;268(2):120–32.PubMedCrossRefGoogle Scholar
  146. 146.
    Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging; a signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology. 1999;211:101–10.PubMedCrossRefGoogle Scholar
  147. 147.
    Bloch BN, Furman-Haran E, Helbich TH, et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging–initial results. Radiology. 2007;245(1):176–85.PubMedCrossRefGoogle Scholar
  148. 148.
    Thomassin-Naggara I, Daraï E, Cuenod CA, Rouzier R, Callard P, Bazot M. Dynamic contrast-enhanced magnetic resonance imaging: a useful tool for characterizing ovarian epithelial tumors. J Magn Reson Imaging. 2008;28(1):111–20.PubMedCrossRefGoogle Scholar
  149. 149.
    Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45.PubMedCrossRefGoogle Scholar
  150. 150.
    Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001;22:1081–8.PubMedGoogle Scholar
  151. 151.
    Stadnik TW, Chaskis C, Michotte A, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol. 2001;22:969–76.PubMedGoogle Scholar
  152. 152.
    Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology. 2006;239(3):632–49.PubMedCrossRefGoogle Scholar
  153. 153.
    Low RN, Gurney J. Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J Magn Reson Imaging. 2007;25(4):848–58.PubMedCrossRefGoogle Scholar
  154. 154.
    Low RN. Diffusion-weighted MR, imaging for whole body metastatic disease and lymphadenopathy. Magn Reson Imaging Clin N Am. 2009;17(2):245–61.PubMedCrossRefGoogle Scholar
  155. 155.
    Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22(4):275–82.PubMedGoogle Scholar
  156. 156.
    Komori T, Narabayashi I, Matsumura K, et al. 2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience. Ann Nucl Med. 2007;21(4):209–15.PubMedCrossRefGoogle Scholar
  157. 157.
    Harisinghani MG, Saini S, Weissleder R, et al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathologic correlation. AJR Am J Roentgenol. 1999;172(5):1347–51.PubMedCrossRefGoogle Scholar
  158. 158.
    Schick F. Whole-body MRI, at high field: technical limits and clinical potential. Eur Radiol. 2005;15(5):946–59.PubMedCrossRefGoogle Scholar
  159. 159.
    Lauenstein TC, Goehde SC, Herborn CU, et al. Whole-body MR imaging: evaluation of patients for metastases. Radiology. 2004;233(1):139–48.PubMedCrossRefGoogle Scholar
  160. 160.
    Antoch G, Vogt FM, Freudenberg LS, et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. J Am Med Assoc. 2003;290(24):3199–206.CrossRefGoogle Scholar
  161. 161.
    Raylman RR, Majewski S, Velan SS, et al. Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager. J Magn Reson. 2007;186(2):305–10.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Abdominal Imaging and InterventionBrigham and Women’s HospitalBostonUSA

Personalised recommendations