Advertisement

Interaction of Radiation with Matter

  • D. Horváth
  • A. Vértes

Abstract

The effects of interactions of the various kinds of nuclear radiation with matter are summarized with special emphasis on relations to nuclear chemistry and possible applications. The Bethe–Bloch theory describes the slowing down process of heavy charged particles via ionization, and it is modified for electrons and photons to include radiation effects like bremsstrahlung and pair production. Special emphasis is given to processes involved in particle detection, the Cherenkov effect and transition radiation. Useful formulae, numerical constants, and graphs are provided to help calculations of the stopping power of particles in simple and composite materials.

Keywords

Pair Production Shell Electron Bloch Equation Cherenkov Radiation Photoelectric Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Hungarian Scientific Research Fund (OTKA) under contracts NK67974 and K72172.

References

  1. Andersen HH, Ziegler JF (1977) Stopping and ranges of ions in matter, vol 3. Pergamon Press, Elmsford, New YorkGoogle Scholar
  2. Auger P (1925) Compt Rend 180:65Google Scholar
  3. Barkas WH, Birnbaum W, Smith FM (1956) Phys Rev 101:778CrossRefGoogle Scholar
  4. Besserer J et al (1997) LMU, München. http://www.bl.physik.uni-muenchen.de/bl_rep/jb1997/
  5. Bethe HA, Ashkin J (1953) Passage of radiations through matter. In: Segrè E (ed) Experimental nuclear physics, vol 1. Wiley, New YorkGoogle Scholar
  6. Bichsel H, Groom DE, Klein SR (2002) In: Particle physics review, Hagiwara K et al, Phys Rev D 66, 010001–195. http://pdg.lbl.gov/
  7. Davies H, Bethe HA, Maximon LC (1954) Phys Rev 93:788CrossRefGoogle Scholar
  8. Frank I, Tamm I (1937) C R Acad Sci USSR 14:109Google Scholar
  9. Groom DE, Mokhov NV, Striganov SI (2001) Atom Data Nucl Data 78:183. http://pdg.lbl.gov/AtomicNuclearProperties,http://physics.nist.gov/PhysRefData
  10. Handbook of analytical methods (2002) Materials Evaluation and Engineering. http://www.mee-inc.com/sam
  11. Hörnfeldt O, Fahlman A, Nordling C (1962) Arkiv Fysik 23:155Google Scholar
  12. Klein O, Nishina G (1929) Z Physik 52:853CrossRefGoogle Scholar
  13. Landau LD (1944) J Exp Phys (USSR) 8:201Google Scholar
  14. Lea D (1962) Actions of radiations on living cells. Cambridge University Press, CambridgeGoogle Scholar
  15. Leo WR (1987) Techniques for nuclear and particle physics experiments, Chapter 2. Springer, BerlinGoogle Scholar
  16. Lindhard J (1954) Kgl Danske Videnskab Selskab Mat-Fys Medd 28:Nr. 8Google Scholar
  17. Moeller SP et al (2002) Phys Rev Lett 88:193201CrossRefGoogle Scholar
  18. Molière G (1947) Z Naturforschung 2a:133Google Scholar
  19. Molière G (1948) Z Naturforschung 3a:78Google Scholar
  20. Molière G (1955) Z Naturforschung 10a:177Google Scholar
  21. Nix R (2002) An introduction to surface chemistry. Queen Mary University of London. http://www.chem.qmw.ac.uk/surfaces/scc/
  22. Nisius R (2000) Phys Rep 332:165CrossRefGoogle Scholar
  23. Rossi B (1952) High energy particles. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  24. Seltzer SM, Berger MJ (1984) Int J Appl Radiation 30:665CrossRefGoogle Scholar
  25. Sternheimer RM, Seltzer SM, Berger MJ (1984) Atom Data Nucl Data 30:261CrossRefGoogle Scholar
  26. Turkevich A, Franzquote E, Patterson J (1967) Science 158:635CrossRefGoogle Scholar
  27. Vértes A, Kiss I (1987) Nuclear chemistry. Elsevier, AmsterdamGoogle Scholar
  28. Ziegler JF, Biersac JF, Littmark U (1985) The stopping and range of ions in solids. Pergamon Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.KFKI Research Institute for Particle and Nuclear PhysicsBudapestHungary
  2. 2.Institute of Nuclear ResearchDebrecenHungary
  3. 3.Eötvös Loránd UniversityBudapestHungary

Personalised recommendations