Advertisement

Nuclear Forensic Materials and Methods

  • I. D. Hutcheon
  • P. M. Grant
  • K. J. Moody

Abstract

A short history and treatment of the various aspects of nuclear forensic analysis is followed by a discussion of the most common chemical procedures, including applications of tracers, radioisotopic generators, and sample chronometry. Analytic methodology discussed includes sample preparation, radiation detection, various forms of microscopy, and mass-spectrometric techniques. The chapter concludes with methods for the production and treatment of special nuclear materials and with a description of several actual case studies conducted at Livermore.

Keywords

Fission Product Uranium Isotope Enrich Uranium Plutonium Isotope Uranium Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

amu

Atomic mass unit

AMDIS

Automated Mass Spectral Deconvolution and Identification System

CBRN

Chemical, Biologic, Radiologic, Nuclear

CBRNE

CBRN + Explosives

CCD

Charge-coupled detector

CSI

Crime-scene investigation

DOE

Department of Energy (US)

D-38

Depleted uranium (235U < 0.72%)

EDS

Energy-dispersive spectrometry (X-ray)

EMIS

Electromagnetic isotope separation

EMPA

Electron microprobe analysis

FTIR

Fourier-transform infrared spectroscopy

GC-MS

Gas chromatography-mass spectrometry

GDMS

Glow-discharge mass spectrometry

HDEHP

di-2-ethylhexyl orthophosphoric acid

HE

High explosives

HEU

High-enriched uranium

HPGe

High-purity germanium

ICP-MS

Inductively coupled-plasma mass spectrometry

IND

improvised nuclear device

IRMS

Isotope-ratio mass spectrometry

LA-ICPMS

Laser ablation ICP-MS

LEPS

Low-energy photon spectroscopy

LEU

Low-enriched uranium

LLNL

Lawrence Livermore National Laboratory (US)

LSC

Liquid scintillation counting

MOX

Mixed-oxide

MC-ICPMS

Multicollector ICP-MS

NBC

Nuclear, Chemical, Biologic

NFA

Nuclear forensic analysis

NIST

National Institute of Standards and Technology (US)

Oralloy

Oak Ridge alloy (nominal 93.5% 235U)

PUREX

Pu-U extraction

PWR

Pressurized-water reactor

RAP

Radiologic Assistance Program (US)

RDD

Radiologic dispersal device

SEM

Scanning electron microscopy

SIMS

Secondary-ion mass spectrometry

SNM

Special nuclear material

SPME

Solid-phase microextraction

TBP

Tributyl phosphate

TEM

Transmission electron microscopy

TIMS

Thermal-ionization mass spectrometry

TNT

Trinitrotoluene

WDS

Wavelength-dispersive spectrometry (X-ray)

WMD

Weapons of mass destruction

XRD

X-ray diffraction (spectrometry)

XRF

X-ray fluorescence (spectrometry)

References

  1. Alessandretto A, Allegretti F, Brofferio C, Camin DV, Remonesi O, Fiorini E, Giulani A, Pavan M, Pessina G, Pizzini S, Previtali E, Sverzellati P, Zanotti L (1993) Nucl Inst Meth Phys Res B83:539Google Scholar
  2. Anderson RM (ed) (1990) Specimen preparation for transmission electron microscopy II, MRS Symposium Proceedings, Vol. 199, Materials Research Society, Pittsburgh PAGoogle Scholar
  3. Aumann DC, Muellen G (1975) Nucl Inst Methods 115:75CrossRefGoogle Scholar
  4. Bark LS, Duncan G, Graham RJT (1967) Analyst 92:347CrossRefGoogle Scholar
  5. Becker JS (2003) Spectrochim Acta B 58:1757CrossRefGoogle Scholar
  6. Becker JS, Dietze H-J (2000) Int J Mass Spectrom 197:1CrossRefGoogle Scholar
  7. Becker EW, Noguiera-Batista P, Voelcker H (1981) Nucl Technol 52:105Google Scholar
  8. Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) Environ Sci Technol 34:2042CrossRefGoogle Scholar
  9. Boehm HDV, Michaels W, Weitkamp C (1978) Optics Comm 26(2):178Google Scholar
  10. Boyle RW (1982) Geochemical prospecting for thorium and uranium deposits. Elsevier, AmsterdamGoogle Scholar
  11. Braverman JC, Anderson RM, Mcdonald ML (eds) (1988) Specimen preparation for transmission electron microscopy I. MRS Symposium Proceedings, Vol. 115, Materials Research Society, Pittsburgh PAGoogle Scholar
  12. Brundle CR, Evans CA Jr, Wilson S (1992) Encyclopedia of materials characterization. Butterworth-Heinemann, BostonGoogle Scholar
  13. Campbell DO, Burch WD (1990) J Radioanal Nucl Chem Articles 142(1):303CrossRefGoogle Scholar
  14. Chiarappa-Zucca ML, Dingley KH, Roberts ML, Velsko CA, Love AH (2002) Anal Chem 74:6285CrossRefGoogle Scholar
  15. Cowan GA (1976) Sci Am 235(1):36CrossRefGoogle Scholar
  16. Cronkite EP (1979) Tritium and other labeled organic compounds incorporated in genetic material. National Council on Radiation Protection and Measurements, Washington DCGoogle Scholar
  17. Davidson JD, Feigelson P (1957) Int J Appl Rad Isotop 2:1CrossRefGoogle Scholar
  18. Duckworth HE, Barber RC, Venkatasubramanian VS (1986) Mass spectrometry. Cambridge University Press, CambridgeGoogle Scholar
  19. Dukert JM (1970) Thorium and the third fuel. Oak Ridge, TN, US Atomic Energy Commission/Division of Technical InformationGoogle Scholar
  20. Duncan JF, Cook GB (1968) Isotopes in chemistry. Clarendon, OxfordGoogle Scholar
  21. Firestone RB, SHIRLEY VS (eds) (1996) Table of isotopes, 8th edn. Wiley, New YorkGoogle Scholar
  22. Frondel JW, Fleischer M, James RS (1967) Glossary of uranium and thorium bearing minerals, 4th edn. Geological Survey Bulletin #1250, U.S. Government Printing Office, Washington, D.CGoogle Scholar
  23. Gillen G, Bright D (2003) Scanning 25:165CrossRefGoogle Scholar
  24. Girardi F, Pietra R (1976) At Energy Rev 14:521Google Scholar
  25. Glasstone S, Sesonske A (1967) Nuclear reactor engineering. Van Nostrand, PrincetonGoogle Scholar
  26. Goldstein JI, Newbury DE, Echlin P, Joy DC, Romig ADJR, Lyman CE, Fiori C, Lifshin E (1992) Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Plenum, New YorkGoogle Scholar
  27. Gonzalez ER, Peterson DS (2009) J Radionucl Nucl Chem 282:543CrossRefGoogle Scholar
  28. Gowing M (1964) Britain and atomic energy (1939–1945). McMillan, LondonGoogle Scholar
  29. Grahame DC, Seaborg GT (1938) J Am Chem Soc 60:2524CrossRefGoogle Scholar
  30. Grainger L (1958) Uranium and thorium. George Newnes, LondonGoogle Scholar
  31. Grant WL, Wannenburg JJ, Haarhoff PC (1977) The cascade technique for the South African enrichment process. AIChE Symposium Series 73.Google Scholar
  32. Grant PM, Whipple RE, Andresen BD (1995a) J Foren Sci 40:18Google Scholar
  33. Grant PM, Whipple RE, Bazan F, Brunk JL, Wong KM, Russo RE, Andresen BD (1995b) J Radioanal Nucl Chem Articles 193:165CrossRefGoogle Scholar
  34. Grant PM, Moody KJ, Hutcheon ID, Phinney DL, Haas JS, Volpe AM, Oldani JJ, Whipple RE, Stoyer N, Alcaraz A, Andrews JE, Russo RE, Klunder GL, Andresen BD, Cantlin S (1998a) J Foren Sci 43:680Google Scholar
  35. Grant PM, Moody KJ, Hutcheon ID, Phinney DL, Whipple RE, Haas JS, Alcaraz A, Andrews JE, Klunder GL, Russo RE, Fickies TE, Pelkey GE, Andresen BD, Kruchten DA, Cantlin S (1998b) J Radioanal Nucl Chem 235:129CrossRefGoogle Scholar
  36. Guseva LI, Tikhomirova GS (1979) J Radioanal Chem 52:369CrossRefGoogle Scholar
  37. Hahn O (1936) Applied radiochemistry. Cornell University Press, Ithaca, NYGoogle Scholar
  38. Hirsch PB, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1971) Electron microscopy of thin crystals. Butterworths, LondonGoogle Scholar
  39. Horrocks DL (1974) Applications of liquid scintillation counting, Chap. 6. Academic, New YorkGoogle Scholar
  40. Hulet EK (1964) J Inorg Nucl Chem 26:1721CrossRefGoogle Scholar
  41. Hyde EK (1956) Radiochemical separation methods for the actinide elements. In: Proceedings of the International Conference on the peaceful used of atomic energy, Geneva, 1955. A/CONF. 8/7, New York: United Nations, p 281Google Scholar
  42. Ireland TR (1995) Adv Anal Geochem 2:1Google Scholar
  43. Johnstone RAW, Herbert CG (2002) Mass spectrometry basics. CRC, Boca Raton, FLCrossRefGoogle Scholar
  44. Joy DC, Romig AD, Goldstein JL (eds) (1986) Principles of analytical electron microscopy. Plenum, New YorkGoogle Scholar
  45. Katz JJ, Seaborg GT (1957) The chemistry of the actinide elements. Wiley, New YorkGoogle Scholar
  46. Krass AS, Boskma P, Elzen B, Smit WA (1983) Uranium enrichment and nuclear weapon proliferation. Taylor and Francis, New YorkGoogle Scholar
  47. Krinsley DH, Pye K, Boggs S Jr, Tovey NK (1998) Backscattered scanning electron microscopy and image analysis of sediments and sedimentary rocks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Kristo MJ, Smith DK, Niemeyer S (2006) Model action plan for nuclear forensics and nuclear attribution. IAEA Nuclear Security Series No. 2, International Atomic Energy Agency, ViennaGoogle Scholar
  49. Laidler JB, Brown F (1962) J Inorg Nucl Chem 24:1485CrossRefGoogle Scholar
  50. Lash LD, Ross JR (1961) J Metals August 1961:555Google Scholar
  51. Lavrukhina AK et al (1967) Chemical analysis of radioactive materials. CRC, Cleveland, OhioGoogle Scholar
  52. Letokov VS (1979) Nature 277:605CrossRefGoogle Scholar
  53. Linge KL, Jarvis KE (2009) Geostand Geoanal Res 33:445CrossRefGoogle Scholar
  54. Lister B (1978) The preparation of polished sections. Rep. No. 78/27, Institute of Geological Science, LondonGoogle Scholar
  55. London H (1961) Separation of isotopes. George Newnes, LondonGoogle Scholar
  56. Long JT (1978) Engineering for nuclear fuel reprocessing, Chap. 3. American Nuclear Society, La Grange Park, ILGoogle Scholar
  57. Lubenau JO, Yusko JG (1995) Health Phys 68:440CrossRefGoogle Scholar
  58. Lubenau JO, Yusko JG (1998) Health Phys 74:293CrossRefGoogle Scholar
  59. Massignon D (1958) Proceedings of Second UNO Geneva Conference on Peaceful Uses of Atomic Energy, Vol 4. UNO, New YorkGoogle Scholar
  60. Mayer K, Wallenius M, Fanghanel T (2007) J Alloys Compounds 444–445:50CrossRefGoogle Scholar
  61. McGinley FE, Facer JF (1976) Uranium ore processing, STI/PUB/453. International Atomic Energy Agency, Vienna, pp 181–190Google Scholar
  62. Moody KJ, Hutcheon ID, Grant PM (2005) Nuclear forensic analysis. CRC/Taylor & Francis, Boca Raton, FLCrossRefGoogle Scholar
  63. Moskalev YuI (ed) (1968) Tritium oxide. Atomizdat, MoscowGoogle Scholar
  64. Muellen G, Aumann DC (1976) Nucl Inst Methods 128:425CrossRefGoogle Scholar
  65. Myers RJ, Metzler DE, Swift EH (1950) J Am Chem Soc 72:3767CrossRefGoogle Scholar
  66. Newbury D, Joy DC, Echlin P, Fiori CE, Goldstein JI (1986) Advanced scanning electron microscopy and X-ray microanalysis. Plenum, New YorkGoogle Scholar
  67. Nier AO, Booth ET, Dunning JR, Grosse AV (1940) Phys Rev 57:546CrossRefGoogle Scholar
  68. Olander DR (1978) Sci Am 239(2):37CrossRefGoogle Scholar
  69. Pawliszyn J (1997) Solid-phase microextraction: theory and practice. Wiley-VCH, New YorkGoogle Scholar
  70. Peteraco N, Kubic T (2004) Color atlas and manual of microscopy for criminalists, chemists, and conservators. CRC, Boca Raton, FLGoogle Scholar
  71. Platzner IT (1997) Modern isotope ratio mass spectrometry. In: Chemical Analysis, Vol 145. Wiley, ChichesterGoogle Scholar
  72. Pluta M (1988) Advanced light microscopy. Elsevier, AmsterdamGoogle Scholar
  73. Ranebo Y, Hedberg PML, Whitehouse MJ, Ingenerid K, Littmann S (2009) J Anal Atom Spectrom 24:277CrossRefGoogle Scholar
  74. Reed SJB (1996) Electron microprobe analysis and scanning electron microscopy in mineralogy. Cambridge University Press, CambridgeGoogle Scholar
  75. Reimer L (1984) Transmission electron microscopy: physics of image formation. Springer, BerlinGoogle Scholar
  76. Reimer L (1985) Scanning electron microscopy. Springer, BerlinGoogle Scholar
  77. Reinig WC, Hutchinson JMR, Koranda JJ, Moghissi AA, Osbourne RV, Ostlund HG (1976) Tritium measurement techniques, NCRP report 47. National Council on Radiation Protection and Measurements, Washington DCGoogle Scholar
  78. Rhodes R (1986) The making of the atomic bomb. Simon & Schuster, New YorkGoogle Scholar
  79. Richter S, Goldberg SA (2003) Int J Mass Spectrom 229:181CrossRefGoogle Scholar
  80. Ruzicki J (1968) Stoichiometry in radiochemical analysis. Pergamon, New YorkGoogle Scholar
  81. Saferstein R (2002) In: Saferstein R (ed) Forensic science handbook, Vol I, 2nd edn. Prentice-Hall, Upper Saddle River, NJ, pp 117–159Google Scholar
  82. Sansoni B, Kracke W (1971) Rapid determination of low-level alpha and beta activities in biological material using wet ashing by OH radicals. In: Rapid methods for measuring radioactivity in the environment. International Atomic Energy Agency, ViennaGoogle Scholar
  83. Schmidt K-H, Sahm C-C, Pielenz K, Clerc H-G (1984) Z Phys A316:19Google Scholar
  84. Sill CW, Williams RL (1981) Anal Chem 53:412CrossRefGoogle Scholar
  85. Sokova EK, Potter WC (2008) Illicit nuclear trafficking: collective experience and the way forward, STI/PUB/1316. International Atomic Energy Agency, Vienna, pp 405–423Google Scholar
  86. Sood DD, Patil SK (1996) J Radioanal Nucl Chem Articles 203(2):547CrossRefGoogle Scholar
  87. Stafford DT (2005) In: Saferstein R (ed) Forensic Science handbook, Vol II, 2nd edn. Prentice-Hall, Upper Saddle River, NJ, pp 81–109Google Scholar
  88. Stone R (2001) Science 292:1632CrossRefGoogle Scholar
  89. Surano KA, Hudson GB, Failor RA, Sims JM, Holland RC, Maclean SC, Garrison JC (1992) J Radioanal Nucl Chem 161:443CrossRefGoogle Scholar
  90. Tamborini G, Betti M (2000) Mikrochim Acta 132:411CrossRefGoogle Scholar
  91. Vasaru G (1975) Separation of isotopes by thermal diffusion. Rumanian Academy, 1972, Bucharest, distributed by USERDA, report ERDA-tr-32Google Scholar
  92. Vickerman JC (1998) Surface analysis – the principal techniques. Wiley, ChichesterGoogle Scholar
  93. Villani S (ed) (1979) Uranium enrichment, Topics in Applied Physics, Vol 35. Springer, BerlinGoogle Scholar
  94. Vol’skii AN, Sterlin YAM (1970) Metallurgy of plutonium. Israel Program for Scientific Translation, JerusalemGoogle Scholar
  95. Wallenius M, Morgenstern A, Apostolidis C, Mayer K (2002) Anal Bioanal Chem 374:379CrossRefGoogle Scholar
  96. Warner JC (ed) (1953) Metallurgy of uranium and its alloys. US Atomic Energy Commission Technical Information Service, Oak Ridge, TNGoogle Scholar
  97. Watt DE, Ramsden D (1964) High sensitivity counting techniques. Macmillan, New YorkGoogle Scholar
  98. Wenk H-R, Champness PE, Christie JM, Crowley JM, Heuer AH, Thomas G, Tighe NJ (eds) (1976) Electron microscopy in mineralogy. Springer, BerlinGoogle Scholar
  99. White FA, Wood GM (1986) Mass spectrometry. Wiley, New YorkGoogle Scholar
  100. Williams P, Woessner PN (1996) Sci Am 274(1):40CrossRefGoogle Scholar
  101. Wills BA (1997) Mineral processing technology, 6th edn. Butterworth/Heinemann, OxfordGoogle Scholar
  102. Wilson RG, Stevie FA, Magee CA (1989) Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis. Wiley-Interscience, New YorkGoogle Scholar
  103. Wong KY, Khan TA, Guglielmi F (1984) Canadian tritium experience. Ontario Hydro, TorontoGoogle Scholar
  104. Wymer RG (ed) (1968) Thorium fuel cycle. In: Proceedings of the Second International Thorium Fuel Cycle Symposium, Gatlinburg, TN, 1966. US Atomic Energy Commission/Division of Technical Information, Oak Ridge, TNGoogle Scholar
  105. Yinon J (ed) (1987) Forensic mass spectrometry. CRC, Boca Raton, FLGoogle Scholar
  106. Zinner E (1989) Isotopic measurements with the ion microprobe. In: Shanks WC, Criss R (eds) U.S. Geological Survey Bulletin 1890. Government Printing Office, Washington DC: U.S, pp 145–162Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • I. D. Hutcheon
    • 1
  • P. M. Grant
    • 1
  • K. J. Moody
    • 1
  1. 1.Livermore National LaboratoryLivermoreUSA

Personalised recommendations