Advertisement

Technical Developments for Harnessing Controlled Fusion

  • G. Veres
  • S. Zoletnik
  • W. Jacob
Reference work entry

Abstract

This chapter gives the conditions for achieving power production using nuclear fusion reactions. The two basic schemes for plasma confinement, inertial and magnetic, are briefly considered and the present technical solutions are outlined. The physical and chemical processes taking place between the hot plasma and the containing vessel wall are discussed in more detail. At the end of the chapter, the present status of research and the planned future development plans are summarized.

Keywords

Boundary Plasma Inertial Confinement Fusion Neutral Beam Injection Fusion Device Fusion Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aymar R, Barabasci P, Shimomura Y (2002) Plasma Phys Controlled Fusion 44:519CrossRefGoogle Scholar
  2. Behrisch R (1981) Sputtering by particle bombardment I, topics in applied physics, vol 4. Springer, BerlinGoogle Scholar
  3. Behrisch R (1983) Sputtering by particle bombardment II, topics in applied physics, vol 42. Springer, BerlinGoogle Scholar
  4. Behrisch R, Eckstein W (2007) Sputtering by particle bombardment IV, topics in applied physics, vol 110. Springer, BerlinGoogle Scholar
  5. Behrisch R, Wittmaack K (1991) Sputtering by particle bombardment III, topics in applied physics, vol 64. Springer, BerlinGoogle Scholar
  6. Braams CM, Stott PE (2000) Nuclear fusion: half a century of magnetic confinement fusion research. Institute of Physics Publishing, BristolGoogle Scholar
  7. Brown IG (2004) The physics and technology of ion sources. Wiley, New YorkCrossRefGoogle Scholar
  8. Cavailler C (2005) Plasma Phys Controlled Fusion 47:B389CrossRefGoogle Scholar
  9. Chen FF (1984) Introduction to plasma physics and controlled fusion. Plenum Press, New YorkGoogle Scholar
  10. Diamond P et al (2005) Plasma Phys Controlled Fusion 47:R35CrossRefGoogle Scholar
  11. Dolan TJ (2000) Fusion research: principles, experiments and technology. Pergamon, OxfordGoogle Scholar
  12. Doyle EJ et al (2007) Nucl Fusion 47:S18CrossRefGoogle Scholar
  13. Eckstein W (2007) Sputtering yields in “Sputtering by Particle Bombardment IV”. In: Behrisch R, Eckstein W (eds) Topics in applied physics, vol 110. Springer, Berlin, pp 33–187Google Scholar
  14. Eckstein W, Urbassek HM (2007) Computer simulation of the sputtering process in “Sputtering by Particle Bombardment IV”. In: Behrisch R, Eckstein W (eds) Topics in applied physics, vol 110. Springer, Berlin, pp 21–31Google Scholar
  15. EFDA (2005) Final report on conceptual power plant study, EFDA report EFDA-RP-RE-5.0Google Scholar
  16. Erckmann W et al (2007) Fusion Sci Technol 53:279Google Scholar
  17. Federici G, Skinner CH, Brooks JN, Coad JP, Grisolia C, Haasz AA, Hassanein A, Philipps V, Pitcher CS, Roth J, Wampler WR, Whyte DG (2001) Plasma–material interactions in current tokamaks and their implications for next step fusion reactors. Nucl Fusion 41:1967–2137CrossRefGoogle Scholar
  18. Felton R et al (2005) Fusion Eng Des 74:561CrossRefGoogle Scholar
  19. Fusjisawa A (2008) Nucl Fusion 49:013001CrossRefGoogle Scholar
  20. Giancarli L et al (2006) Fusion Eng Des 81:393CrossRefGoogle Scholar
  21. Gil RD (1981) Plasma physics and nuclear fusion research. Academic, London/New YorkGoogle Scholar
  22. Gormezano G (1986) Plasma Phys Controlled Fusion 28:1365CrossRefGoogle Scholar
  23. Hammel BA (2006) Plasma Phys Controlled Fusion 48:B497CrossRefGoogle Scholar
  24. Helander P, Sigmar DJ (2002) Collisional transport in magnetized plasmas. Cambridge University Press, CambridgeGoogle Scholar
  25. HIPER (2007) Technical background and conceptual design report 2007, www.hiper-laser.org/docs/tdr/hipertdr2.pdf
  26. Hirsch M et al (2008) Major results from the Stellarator Wendelstein 7-AS. Plasma Phys Controlled Fusion 50(053001):204Google Scholar
  27. Hopf C, Jacob W (2005) Bombardment of graphite with hydrogen isotopes: a model for the energy dependence of the chemical sputtering yield. J Nucl Mater 342:141–147CrossRefGoogle Scholar
  28. Hutchinson I (2002) Principles of plasma diagnostics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. Ihli T et al (2007) Fusion Eng Des 82:2705CrossRefGoogle Scholar
  30. ITER (2007) Nucl Fusion 47:S1–S413CrossRefGoogle Scholar
  31. ITER (1999) ITER final design report, ITER EDA Documentation Series No.14, IAEA, ViennaGoogle Scholar
  32. Jacob W (2005) Redeposition of hydrocarbon layers in fusion devices. J Nucl Mater 337–339:839–846CrossRefGoogle Scholar
  33. Jacob W, Roth J (2007) Chemical sputtering in “Sputtering by Particle Bombardment IV”. In: Behrisch R, Eckstein W (eds) Topics in applied physics, vol 110. Springer, Berlin, pp 329–400Google Scholar
  34. Jacqunot J (1999) Nucl Fusion 39:235CrossRefGoogle Scholar
  35. Kasugai A et al (2006) Fusion Eng Des 81:2791CrossRefGoogle Scholar
  36. Keilhacker M (1999) Nucl Fusion 39:209CrossRefGoogle Scholar
  37. Kohl W (1995) Handbook of materials and techniques for vacuum devices. AIP Press, WoodburyGoogle Scholar
  38. Küppers J (1995) Surf Sci Rep 22:249–321CrossRefGoogle Scholar
  39. Lawson JD (1957) Proc Phys Soc B 70:6CrossRefGoogle Scholar
  40. Lindau R et al (2005) Fusion Eng Des 75:989CrossRefGoogle Scholar
  41. Lindl J (1995) Phys Plasmas 2:3933CrossRefGoogle Scholar
  42. Meyer-ter-Vehn J (2001) Plasma Phys Controlled Fusion 43:A113CrossRefGoogle Scholar
  43. Moeslang A et al (2006) Fusion Eng Des 81:863CrossRefGoogle Scholar
  44. Najbamadi F et al (2003) Fusion Eng Des 65:143CrossRefGoogle Scholar
  45. Najmabadi F et al (2006) Fusion Eng Des 80:3CrossRefGoogle Scholar
  46. Naujoks D (2006) Plasma–material interaction in controlled fusion. Springer, BerlinGoogle Scholar
  47. Nusinovich G (2004) Introduction to the physics of gyrotrons. Johns Hopkins University Press, Baltimore/LondonGoogle Scholar
  48. Oikawa T et al (2001) Plasma Phys Controlled Fusion 41:1575Google Scholar
  49. Olson C (2005) Fusion Sci Technol 47:633Google Scholar
  50. Peeters AG (2000) Plasma Phys Controlled Fusion 42:B231CrossRefGoogle Scholar
  51. Raffray AR (2007) Fusion Sci Technol 54:725Google Scholar
  52. Roth J, Bohdansky J, Wilson KL (1982) Erosion of carbon due to bombardment with energetic ions at temperatures up to 2000 K. J Nucl Mater 111–112:775–780CrossRefGoogle Scholar
  53. Sakharov AD (1951) In: Leontovich MA (ed, 1958) Plasma physics and the problem of controlled thermonuclear reactions. English translation: Pergamon, 1961, OxfordGoogle Scholar
  54. Samm U (2008) Plasma-wall interaction in magnetically confined fusion plasmas. Fusion Sci Technol 53:223–228Google Scholar
  55. Schmid K, Baldwin M, Doerner R (2006) Modelling of thermally enhanced erosion of beryllium. J Nucl Mater 348:294–301CrossRefGoogle Scholar
  56. Schwarz-Selinger T, Genoese F, Hopf Ch, Jacob W (2009a) Carbon removal from tile-gap structures with oxygen glow discharges. J Nucl Mater 390–391:602–605CrossRefGoogle Scholar
  57. Schwarz-Selinger T, von Toussaint U, Hopf Ch, Jacob W (2009b) Fuel removal from tile gaps with oxygen discharges: reactivity of neutrals. Phys Scr T138(014009):8Google Scholar
  58. Shafranov VD (1966) Rev Plasma Phys 2:103Google Scholar
  59. Spitzer L Jr (1958) Phys Fluids 1:253CrossRefGoogle Scholar
  60. Sproul WD, Christie DJ, Carter DC (2005) Control of reactive sputtering processes. Thin Solid Films 491:1–17CrossRefGoogle Scholar
  61. Stangeby PC (2002) The plasma boundary of magnetic fusion devices. Institute of Physics Publishing, BristolGoogle Scholar
  62. Strachan JD (1997) Plasma Phys Controlled Fusion 39:B103CrossRefGoogle Scholar
  63. Stroth U et al (1996) Plasma Phys Controlled Fusion 38:611CrossRefGoogle Scholar
  64. Tamm IY (1951) In: Leontovich MA (ed, 1958) Plasma physics and the problem of controlled thermonuclear reactions. English translation: Pergamon, 1961, OxfordGoogle Scholar
  65. Tore Supra Team (1999) Fusion Eng Des 46:313–322CrossRefGoogle Scholar
  66. Wagner F (2007) Plasma Phys Controlled Fusion 49:B1CrossRefGoogle Scholar
  67. Wesson J (2000a) The science of JET, JET open publication. See www.jet.efda.org
  68. Wesson J (2000b) Tokamaks. Clarendon Press, OxfordGoogle Scholar
  69. Yamada H (2005) Nucl Fusion 45:1684CrossRefGoogle Scholar
  70. Ziegler JF, Biersack JP, Littmark U (1985) Stopping and range of ions in solids. Pergamon, New York (See also: http://www.srim.org/)

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.KFKI Research Institute for Particle and Nuclear PhysicsBudapestHungary
  2. 2.Max-Planck-Institut für Plasmaphysik, Bereich Materialforschung, AG Reaktive PlasmaprozesseGarchingGermany

Personalised recommendations