Tunneling Through Triple-Humped Fission Barriers

  • A. Krasznahorkay


This chapter gives a survey of the latest results obtained for the fission process that takes place when the energy of the compound system is smaller than the energy of the fission barrier. The tunneling and resonant tunneling processes play a role in this energy region. The transmission resonances were studied in high-energy-resolution experiments and the excitation energies, J π and K values of the states were determined. Rotational bands were constructed, from which the moment of inertia and the degree of the deformation were determined. The implications of these results to the present knowledge of the fission potential extracted from experiments are discussed.


Fission Fragment Rotational Band Shell Correction Band Head Liquid Drop Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work has been supported by DFG under HA 1101/12-2 and UNG 113/129/0, the DFG cluster of excellence “Origin and Structure of the Universe,” and the Hungarian OTKA Foundation No. K72566.


  1. Ackermann B et al (1993) Nucl Phys A 559:61Google Scholar
  2. Andersen BL, Back BB, Bang JM (1970) Nucl Phys A 147:33Google Scholar
  3. Back BB, Bondorf JP, Otroshenko GA, Pedersen J, Rasmussen B (1971) Nucl Phys A 165:449Google Scholar
  4. Back BB et al (1972) Phys Rev Lett 28:1707CrossRefGoogle Scholar
  5. Back BB, Hansen O, Britt HC, Garrett JD (1974) Phys Rev C 9:1924Google Scholar
  6. Bengtsson R et al (1987) Nucl Phys A 473:77Google Scholar
  7. Berger JF, Girod M, Gogny D (1989) Nucl Phys A 502:85cGoogle Scholar
  8. Bjornholm S, Dubois J, Elbek B (1968) Nucl Phys A 118:241Google Scholar
  9. Bjornholm S, Lynn JE (1980) Rev Mod Phys 52:725CrossRefGoogle Scholar
  10. Blons J, Mazur C, Paya D (1975) Phys Rev Lett 35:1749CrossRefGoogle Scholar
  11. Blons J et al (1978) Phys Rev Lett 41:1282CrossRefGoogle Scholar
  12. Blons J, Mazur C, Paya D, Ribrag M, Weigmann H (1984) Nucl Phys A 414:1Google Scholar
  13. Blons J et al (1988) Nucl Phys A 477:231Google Scholar
  14. Blum V, Maruhn JA, Reinhard P-G, Greiner W (1994) Phys Lett B 323:262Google Scholar
  15. Bohr A (1956) On the theory of nuclear fission. In: Proceedings of the Geneva conference 1955, vol 2, p 220Google Scholar
  16. Bohr N, Wheeler JA (1939) Phys Rev 56:426CrossRefGoogle Scholar
  17. Boldeman JW, Walsch RL (1985) In: Proceedings of the international conference Santa Fe, New Mexico, vol 1, p 317Google Scholar
  18. Britt HC, Rickey FA, Hall WS (1968) Phys Rev 175:1525CrossRefGoogle Scholar
  19. Britt HC, Bolsterli M, Nix JR, Norton JL (1973) Phys Rev C 7:801Google Scholar
  20. Brody TA et al (1981) Rev Mod Phys 53:385CrossRefGoogle Scholar
  21. Buck B, Biedenharn LC, Cusson RY (1979) Nucl Phys A 317:205Google Scholar
  22. Crouzen PCN (1988) PhD thesis, Rijksuniversiteit GroningenGoogle Scholar
  23. Csatlós M et al (2005) Phys Lett B 615:175Google Scholar
  24. Csige L et al (2009) Phys Rev C 80:011301Google Scholar
  25. Cwiok S et al (1987) Comput Phys Commun 46:379CrossRefGoogle Scholar
  26. Cwiok S, Nazarewicz W, Saladin JX, Plociennik W, Johnson A (1994) Phys Lett B 322:304Google Scholar
  27. Enge HA, Kowalsky SB (1970) In: Proceedings of the 3rd international conference on magnet technology, Hamburg (Deutsches Elektronen-Synchrotron, Hamburg)Google Scholar
  28. George L et al (1963) Phys Rev 131:722CrossRefGoogle Scholar
  29. Glässel P (1974) Dissertation, Univ. MünchenGoogle Scholar
  30. Glässel P, Röser H, Specht HJ (1976) Nucl Phys A 256:220Google Scholar
  31. Goeppert-Mayer M (1949) Phys Rev 75:1969CrossRefGoogle Scholar
  32. Goerlach U (1978) Diploma thesis, Univ./MPI HeidelbergGoogle Scholar
  33. Goerlach U (1980) Dissertation, Univ. HeidelbergGoogle Scholar
  34. Goerlach U et al (1978) Z Phys A 287:171Google Scholar
  35. Goerlach U et al (1982) Phys Rev Lett 48:1160CrossRefGoogle Scholar
  36. Goldstone PD et al (1975) Phys Rev Lett 35:1141CrossRefGoogle Scholar
  37. Goldstone PD, Hopkins F, Malmin RE, Paul P (1978) Phys Rev C 18:1706Google Scholar
  38. Hahn O, Strassmann F (1939) Naturwissenschaften 27:11CrossRefGoogle Scholar
  39. Haxel O, Jensen JHD, Suess HE (1949) Phys Rev 75:1766CrossRefGoogle Scholar
  40. Hill DL, Wheeler JA (1953) Phys Rev C 89:1102CrossRefGoogle Scholar
  41. Howard WM, Möller P (1980) Atom Data Nucl Data 25:219, and references thereinCrossRefGoogle Scholar
  42. Hunyadi M (1999) PhD thesis, Lajos Kossuth University DebrecenGoogle Scholar
  43. Hunyadi M et al (2001) Phys Lett B 505:27Google Scholar
  44. Just M (1978) PhD thesis, University HeidelbergGoogle Scholar
  45. Just M et al (1979) In: Proceedings of the symposium physics and chemistry of fission. IAEA, Jülich, p 71Google Scholar
  46. Just M, Goerlach U, Habs D, Metag V, Specht HJ (1980) In: Symposium on physics and chemistry of fission, Jülich 1979, IAEA, Vienna, SM-241/A4, p 71Google Scholar
  47. Kikuchi Y, An S (1970) J Nucl Sci Technol 7:157CrossRefGoogle Scholar
  48. Krappe HJ, Nix JR, Sierk AJ (1979) Phys Rev C 20:992Google Scholar
  49. Krasznahorkay A et al (1996) Acta Phys Pol B 27:139Google Scholar
  50. Krasznahorkay A et al (1998a) In: Proceedings of the international symposium on exotic nuclear shapes, Debrecen 1997 APH N.S. Heavy Ion Physics, 7, 35Google Scholar
  51. Krasznahorkay A et al (1998b) Phys Rev Lett 80:2073CrossRefGoogle Scholar
  52. Krasznahorkay A et al (1999) Phys Lett B 461:15Google Scholar
  53. Krasznahorkay A et al (2000) In: Poenaru D, Stoica S (eds) Proceedings of the international symposium on advances in nuclear physics, Bucharest, Romania, 9–10 Dec 1999. World Scientific, Singapore, p 328Google Scholar
  54. Krasznahorkay A et al (2001a) Acta Phys Hung NS H 13:111Google Scholar
  55. Krasznahorkay A et al (2001b) Acta Phys Pol B 32:657Google Scholar
  56. Krasznahorkay A et al (2001c) In: Bonsignori GC et al (eds) Proceedings of the conference: Bologna 2000. Structure of the nucleus at the dawn of the century, Bologna, Italy, 29 May–3 June 2000. World Scientific, New Jersey, 2, p 306Google Scholar
  57. Krasznahorkay A et al (2003) Acta Phys Hung NS-H 18:323CrossRefGoogle Scholar
  58. Krasznahorkay A et al (2004) In: Mueller AC, Mirea M, Tassan-Got L(ed) International workshop of new applications of nuclear fission. Bucharest, Romania, 7–12 Sept 2003. Proceedings. World Scientific, New Yersey, p 95Google Scholar
  59. Krasznahorkay A et al (2006) In: Woehr A, Aprahamian A (eds) 12th international symposium on capture gamma spectroscopy and related topics, Notre Dame, Indiana, 4–9 Sept 2005. Proceedings. AIP (AIP Conference Proceedings 819), New York, p 439Google Scholar
  60. Meitner L, Frisch OR (1939) Nature 143:239CrossRefGoogle Scholar
  61. Metag V, Habs D, Specht HJ (1980) Phys Rep 65:1CrossRefGoogle Scholar
  62. Möller P, Nix JR (1981) Nucl Phys A 461:117Google Scholar
  63. Möller P, Nix JR (1988) Atom Data Nucl Data 39:213CrossRefGoogle Scholar
  64. Möller P, Nilsson SG, Sheline RK (1972) Phys Lett B 40:329Google Scholar
  65. Myers WD, Swiatecki WJ (1969) Ann Phys NY 55:385CrossRefGoogle Scholar
  66. Nilsson SG (1955) Kgl Dan Vid Selsk Mat-Fys Medd 29(16)Google Scholar
  67. Pedersen J, Kuzminov BD (1969) Phys Lett B 29:176Google Scholar
  68. Polikhanov SM et al (1962) Sov Phys JETP 15:1016Google Scholar
  69. Rabotnov NS et al (1970) Sov J Nucl Phys 11:285Google Scholar
  70. Rauscher T, Thielemann FK, Kratz KL (1995) Phys Rev C 56:185Google Scholar
  71. Rauscher T, Thielemann FK, Kratz KL (1997) Phys Rev C 56:1613Google Scholar
  72. Royer G, Bonilla C (2007) J Radioanal Nucl Ch 272:237CrossRefGoogle Scholar
  73. Rutz K, Maruhn JA, Reinhard P-G, Greiner W (1995) Nucl Phys A 590:680Google Scholar
  74. Shneidman TM et al (2000) Nucl Phys A 671:119Google Scholar
  75. Schmidt K-H et al (1994) Phys Lett B 325:313Google Scholar
  76. Sin M et al (2006) Phys Rev C 74:014608Google Scholar
  77. Sin M et al (2008) Phys Rev C 77:054601Google Scholar
  78. Specht HJ (1970) Habilitationsschrift, Univ. MünchenGoogle Scholar
  79. Specht HJ, Fraser JS, Milton JC (1966) Phys Rev Lett 17:1187CrossRefGoogle Scholar
  80. Specht HJ, Fraser JS, Milton JCD, Davies WG (1969) In: Proceedings of the symposium on physics and chemistry of fission. IAEA, Vienna, p 363Google Scholar
  81. Specht HJ, Weber J, Konecny E, Heunemann D (1972) Phys Lett B 41:43Google Scholar
  82. Spencer JE, Enge HA (1967) Nucl Instrum Meth 49:181CrossRefGoogle Scholar
  83. Strutinsky VM (1967) Nucl Phys A 95:420Google Scholar
  84. Swiatecki WJ (1964) Proc Int Conf Nuclidic Masses, Vienna, 1963, Springer-Verlag, Vienna, pp 58–66Google Scholar
  85. Thirolf PG, Habs D (2002) Prog Part Nucl Phys 49:245CrossRefGoogle Scholar
  86. Vandenbosch R, Huizenga J (1973) Nuclear fission. Academic, New YorkGoogle Scholar
  87. Vandenbosch R, Wolf KL, Unik J, Stephan C, Huizenga JR (1967) Phys Rev Lett 19:1138CrossRefGoogle Scholar
  88. von Egidy T, Smidt HH, Behkami AN (1988) Nucl Phys A 481:189Google Scholar
  89. Wagemans C (1991) The nuclear fission process. CRC Press, Boca RatonGoogle Scholar
  90. Weizsäcker CFV (1935) Z Phys 96:431CrossRefGoogle Scholar
  91. Zanotti E, Bisenberger M, Hertenberger R, Kader H, Graw G (1991) Nucl Instrum Meth A 310:706Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Division of Nuclear PhysicsInstitute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI)DebrecenHungary

Personalised recommendations