Advertisement

Dosimetry Methods

  • W. L. McLaughlin
  • A. Miller
  • A. Kovács
  • K. K. Mehta

Abstract

Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.

Keywords

Radiation Processing Glow Curve Irradiate Film Dosimetry System Radiation Sterilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdel-Fattah AA, Miller A (1996) Radiat Phys Chem 47:611Google Scholar
  2. ANSI (1993) Personnel dosimetry performance; criteria for testing. ANSI standard no. N13.11–1993, American National Standard Institute, New YorkGoogle Scholar
  3. ANSI (1996) Method for evaluation films for monitoring x-rays and ganna rays having energies up to 3 million electron vpolts. ANSI/NAPM standard no. IT2.10–1996, American National Standards Institute, New YorkGoogle Scholar
  4. Artandi C, Stonehill AA (1958) Nucleonics 16:118Google Scholar
  5. ASTM (1995) Standard pracrice for using the Fricke reference standard dosimetry system. ASTM standard E 1026-1995, American Society for Testing and Materials, http://www.astm.org)
  6. ASTM (2004) Standard pracrice for using of a LiF photo-fluorescent film dosimetry system. ASTM standard E 2304-2004, American Society for Testing and Materials, http://www.astm.org)
  7. Attix FH (1959) Nucleonics 17(4):142Google Scholar
  8. Baeyens B, Coninkx F, Maier P, Schonbacher H (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, 1984. STI/PUB/671, International Atomic Energy Agency, Vienna, p 275Google Scholar
  9. Barquero R, Mendez R, Iniguez MP, Vega HR, Voltchev M (2002) Radiat Prot Dosim 101:493Google Scholar
  10. Barrett JH (1982) Int J Appl Radiat Isot 33:1177Google Scholar
  11. Barrett JH, Sharpe PHG, Stuart IP (1980) Part 1. NPL report RS 49. National Physical Laboratory, TeddingtonGoogle Scholar
  12. Bartolotta A, Caccia B, Indovina PL, Onori S, Rosati A (1985) High-dose dosimetry. In: Symposium proceedings, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 245Google Scholar
  13. Becker K (1973) Solid-state dogimetry, CRC press, Boca Rason, Florida.Google Scholar
  14. Bewley DK (1969) Ann NY Acad Sci 161:94Google Scholar
  15. Bewley DK, Mccullough EC, Page BC, Sakata S (1972) Neutron dosimetry in biology and medicine. In: Proceedings of first symposium on neutron dosimetry, Munich/Neuherberg, p 159Google Scholar
  16. Bielski B, SHLUE GG, BAJUK S (1980) J Phys Chem 84:830Google Scholar
  17. Biramontri S, Haneda N, Tachibana H, Kojima T (1996) Radiat Phys Chem 48:105Google Scholar
  18. Bishop WP, Humpherys KC, Randike PT (1973) Rev Sci Instrum 44:443Google Scholar
  19. BjÄrngard B (1963) Aktiebolaget Atomenergie report AE-118, Stockholm, SwedenGoogle Scholar
  20. Bjergbakke E (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, part 2. Marcel Dekker, New York, p 323Google Scholar
  21. Blaedel WJ, Petitjean DL (1956) In: Berl WG (ed) Physical methods in chemical analysis, vol III. Academic, New York, p 107Google Scholar
  22. Bobrowski K, Dzierzkowska G, Grodkowski J, Stuglik Z, Zagorski ZP, McLaughlin WL (1985) J Phys Chem 89:4358Google Scholar
  23. Boetter-Jensen L, McKeever SWS, Wintle AG (2003) Optically stimulated luminescence dosimetry, Elsevier.Google Scholar
  24. Bradshaw WW, Cadena DC, Crawford EW, Spetzler HAW (1962) Radiat Res 17:11Google Scholar
  25. Brady JM, Aaerestad NO, Swartz HM (1968) Health Phys 15:43Google Scholar
  26. Brynjolfsson A, Holm NW, ThÄrup G, Sehested K (1963) Industrial uses of large radiation sources. In: Symposium proceedings, vol II, International Atomic Energy Agency, Vienna, p 281Google Scholar
  27. Burgkhardt B, Singh D, Piesch E (1977) Nucl Instrum Methods 141:363Google Scholar
  28. Burns DT, Morris WT (1988) High-dose calorimetric standard for electron beams. NPL Report RS (EXT) 101, National Physical Laboratory, TeddingtonGoogle Scholar
  29. Butson MJ, Rozenfeld A, Mathur JN, Carolan M, Wong TPY, Metcalfe PE (1996) Med Phys 23:655Google Scholar
  30. Calvet A, Prat H (1956) Microcalorimetrie. Masson et Cie, ParisGoogle Scholar
  31. Cameron JR (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, chapter C. Marcel Dekker, New York, p 410Google Scholar
  32. Cameron JR, Suntharalingam N, Kenney GN (1968) Thermoluminescent dosimetry. University of Wisconsin Press, MadisonGoogle Scholar
  33. Chadwick KH (1969) Atompraxis 15:181Google Scholar
  34. Chadwick KH (1977) In: Casnati E (ed) Ionizing radiation metrology. Editrice Compositori, Bologna, p 195Google Scholar
  35. Chadwick KH, Rintjema D, Broeke WRR (1978) Food preservation by irradiation. In: Proceedings of symposium, vol II, IAEA publication STI/PUB/470, International Atomic Energy Agency, Vienna, p 327Google Scholar
  36. Chappas W (1980) Radiat Phys Chem 18:1017Google Scholar
  37. Charlesby A (1960) Atomic radiation and polymers. Academic, New YorkGoogle Scholar
  38. Charlesby A, Gould AR, Ledbury KJ (1964) Proy Roy Soc A247:348Google Scholar
  39. Chen W, Haishen J, Xiang D, Dongyuan L, Huaying B (1980) Radiat Phys Chem 16:195Google Scholar
  40. Christensen P (1982) Application of thermoluminescent dosimetry to high-dose measurements. In: Seminar on IAEA high-dose dosimetry in industrial radiation processing, Risø National Laboratory, RoskildeGoogle Scholar
  41. Christensen P, BØtter-Jensen L, Majborn B (1982) Int J Appl Radiat Isot 33:1035Google Scholar
  42. Collins AK, Makrigiorgos GM, Svensson GK (1994) Med Phys 21:1741Google Scholar
  43. Coninckx F, Schönbacher H, Tavlet M, Paic G, Razem D (1993) Nucl Instrum Meth Phys Res B 83:181Google Scholar
  44. Deplanque G, Gesell TF (1982) Int J Appl Radiat Isot 31(11):1015Google Scholar
  45. Desrosiers MF, Cooper SL, Puhl JM, McBain AL, Calwert GW (2004) Radiat Phys Chem 71(1–2):365Google Scholar
  46. Desrosiers MF, Peters M, Puhl JM (2009a) Radiat Phys Chem 78(7–8):465Google Scholar
  47. Desrosiers MF, Puhl JM (2009b) Radiat Phys Chem 78(7–8):461Google Scholar
  48. Dixon RL, Eckstrand KE (1982) Radiat Phys Chem 33:1171Google Scholar
  49. Dole M (1972) The radiation chemistry of macromolecules, vol 1. Academic, New YorkGoogle Scholar
  50. Domen SR (1982) J Res Natl Bur Stand 87:211Google Scholar
  51. Domen SR (1983a) Int J Appl Radiat Isot 34:643Google Scholar
  52. Domen SR (1983b) J Res Natl Bur Stand 88:373Google Scholar
  53. Domen SR (1987) In: Kase KR, Bjärngaard B, Attix FH (eds) The dosimetry of ionizing radiation, chapter 4, vol II. Academic, New York, p 245Google Scholar
  54. Domen SR, Ba WZ (1987) Nucl Instrum Meth Phys Res B 24/25:1054Google Scholar
  55. Domen SR, Lamperti PJ (1974) J Res Natl Bur Stand A78:595Google Scholar
  56. Dvornik I (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, part II. Marcel Dekker, New York, p 345Google Scholar
  57. Dvornik I, Zec U, Ranogajec F (1966) Food irradiation. In: Proceedings of symposium, SM-73/15, IAEA, International Atomic Energy Agency, Vienna, p 81Google Scholar
  58. Dvornik I, Razem D, Baric M (1969) Large radiation sources for industrial processes. In: IAEA symposium proceedings, International Atomic Energy Agency, Vienna, p 613Google Scholar
  59. Ebraheem S, Beshir WB, Kovács A, Wojnárovits L, Mclaughlin WL (1999) Radiat Phys Chem 55:785Google Scholar
  60. Ebraheem S, Beshir WB, Eid S, Sobhy R, Kovács A (2003) Radiat Phys Chem 67:569Google Scholar
  61. Ehlermann DAE (1988) In: Bögl KW, Regulla DF, Suess MJ (eds) Health impact, identification, and dosimetry of irradiated foods, Institue für Strahlenhygiene, report 125, report of WHO working group, Institut für Strahlenhygiene des Bundesgesundheitsamt, Neuherberg/Munich, p 415Google Scholar
  62. Emy-Reynolds G, Kovács A, Fletcher JJ (2007a) Radiat Phys Chem 76:1515Google Scholar
  63. Emy-Reynolds G, Kovács A, Fletcher JJ (2007b) Radiat Phys Chem 76:1519Google Scholar
  64. Ettinger RV, Puite KJ (1982) Int J Appl Radiat Isot 33:1115Google Scholar
  65. Farahani M, Mclaughlin WL (1988) Radiat Phys Chem 32:683Google Scholar
  66. Fielden EM, Holm NW (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry. Marcel Decker, New York, p 262Google Scholar
  67. Földiák G, Horváth Zs, Stenger V (1973) Dosimetry in agriculture, industry, biology, and medicine. In: International Atomic Energy Agency (ed) Proceedings of symposium, STI/PUB/311, International Atomic Energy Agency, Vienna, p 367Google Scholar
  68. Fowler JH, Attix FH (1966) In: Attrix FH, Roesch WC (eds) Radiation dosimetry, vol II. International Atomic Energy Agency, New York, p 367Google Scholar
  69. Freytag E (1971) Health Phys 20:93Google Scholar
  70. Fricke H, Hart EJ (1966) In: Attix FH, Roesch WC (eds) Radiation dosimetry, chapter 12, vol II. Academic, New York, p 1Google Scholar
  71. Fuochi PG, Lavalle M, Gombia E, Mosca R, Kovács A, Vitanza A, Patti A (1999) On the use of a bipolar power transistor as routine dosimeter in radiation processing. IAEA-TECDOC-1070, IAEA-SM-356/47. International Atomic Energy Agency, Vienna, p 95Google Scholar
  72. Fuochi PG, Lavalle M, Corda U, Recupero S, Bosetto A, Bascieri V, Kovács A (2004) Radiat Phys Chem 71:385Google Scholar
  73. Fuochi PG, Corda U, Gombia E, Lavalle M (2006) Nucl Instrum Meth A 564:521Google Scholar
  74. Fuochi PG, Lavalle M, Corda U, Kovács A, Peimel-Stuglik Z, Gombia E (2009a) Nucl Instrum Meth A 599:284Google Scholar
  75. Fuochi PG, Lavalle M, Corda U, Kuntz F, Plumeri S, Gombia E (2009b) Radiat Phys Chem. doi:10.1016/j.radphyschem. 2009.10.001Google Scholar
  76. Garcia RMD, Desrosiers MF, Attwood JG, Steklenski D, Griggs J, Ainsworth A, Heiss A, Mellor P, Patil D, Meiner J (2004) Radiat Phys Chem 71(1–2):375Google Scholar
  77. Gehringer P, Proksch E, Eschweiler H (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 333Google Scholar
  78. Genna S, Jaeger RG, Nagl J, Sanielevici A (1963) At Energy Rev 1:239Google Scholar
  79. Gierlach ZS, Krebs AT (1949) Am J Roentgenol Radium Ther 62:559Google Scholar
  80. Glover KM, King M, Watts MF (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, 1984. STI/PUB/671, International Atomic Energy Agency, Vienna, p 373Google Scholar
  81. Gupta BL, Bhat RM, Nariyan GR, Nilekani SR (1985) Radiat Phys Chem 26:647Google Scholar
  82. Hansen JW (1984) Risø report R-507. Risø National Laboratory, RoskildeGoogle Scholar
  83. Hansen JW, Olsen KJ (1986) Radiat Phys Chem 28(5–6):535Google Scholar
  84. Hansen JW, Olsen KJ, Wille M (1987) Radiat Prot Dosim 19:43Google Scholar
  85. Hartsom A, Mackay G, Spender M, Thomson I (1995) Absorbed dose mapping in self-shielded irradiators using direct reading MOSFET dosimeters. In: Annual meeting of the health physics society, July 1995. Available from Thomson and Nielsen Electronics, 25E Northside Road, Nepean, Ontario, Canada K2H8S1Google Scholar
  86. Horowitz YS (1984) Thermoluminescence and thermoluminescence dosimetry, vol I–III. CRC Press, Boca RatonGoogle Scholar
  87. Hubbell JH (1982) In: McLaughlin WL (ed) Trends in radiation dosimetry. Pergamon Press, Oxford; Int J Appl Radiat Isot 33:1269Google Scholar
  88. Humphreys JC, Mclaughlin WL (1989) Radiation processing: state of the art. In: Proceedings of 7th international meeting on radiation processing; Radiat Phys Chem 35:744Google Scholar
  89. ICRU (1969) Radiation dosimetry: X rays and gamma rays with maximum photon energies between 0.6 and 50 MeV, ICRU report 14. International Commission on Radiation Units and Measurements, BethesdaGoogle Scholar
  90. ICRU (2008) Dosimetry systems for use in radiation processing, ICRU report 80. International Commission on Radiation Units and Measurements, BethesdaGoogle Scholar
  91. ISO (1994) Personal photographic dosemeters, ISO/DIS report 1757. International Standards Organization, GenevaGoogle Scholar
  92. ISO (2006) Sterilization of health care products – radiation – parts 1-2-3, ISO 11137. International Organization for Standardization, GenevaGoogle Scholar
  93. ISO/ASTM (2002a) Standard practice for use of a ceric-cerous sulphate dosimetry system. ISO/ASTM standard 51205, American Society for Testing and Materials, http://www.astm.org
  94. ISO/ASTM (2002b) Standard practice for use of the ethanol-chlorobenzene dosimetry system. ISO/ASTM standard 51538, American Society for Testing and Materials, http://www.astm.org
  95. ISO/ASTM (2002c) Standard practice for use of a radiochromic liquid dosimetry system. ISO/ASTM standard 51540, American Society for Testing and Materials, http://www.astm.org
  96. ISO/ASTM (2002d) Standard practice for use of cellulose acetate dosimetry system. ISO/ASTM standard 51650, American Society for Testing and Materials, http://www.astm.org
  97. ISO/ASTM (2002e) Standard practice for the use of a polymethylmethacrylate dosimetry system. ISO/ASTM standard 51276, American Society for Testing and Materials, http://www.astm.org
  98. ISO/ASTM (2002f) Standard practice for use of a radiochromic film dosimetry system. ISO/ASTM standard 51275, American Society for Testing and Materials, http://www.astm.org
  99. ISO/ASTM (2002g) Standard practice for thermoluminescence-dosimetry (TLD) systems for radiation processing. ISO/ASTM standard 51956, American Society for Testing and Materials, http://www.astm.org
  100. ISO/ASTM (2003a) Standard practice for the use of a dichromate dosimetry system. ISO/ASTM standard 51401, American Society for Testing and Materials, http://www.astm.org
  101. ISO/ASTM (2003b) Standard practice for use of calorimetric dosimetry system. ISO/ASTM standard 51631, American Society for Testing and Materials, http://www.astm.org
  102. ISO/ASTM (2004) Standard practice for use of the alanine-EPR dosimetry system. ISO/ASTM standard 51607, American Society for Testing and Materials, http://www.astm.org
  103. Janovsky I (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 307Google Scholar
  104. Janovsky I, Miller A (1987) Appl Radiat Isot 38:931Google Scholar
  105. Janovsky I, Hansen J, Cernoch P (1988) Appl Radiat Isot 39:651Google Scholar
  106. Kantz AD, Humpherys KC (1977) Radiat Phys Chem 9:737Google Scholar
  107. Kojima T, Tanaka R, Morita A, Seguchi T (1986) Appl Radiat Isot 37:517Google Scholar
  108. Kovács A, Stenger V, Földiák G, Legeza L (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 135Google Scholar
  109. Kovács A, Wojnárovits L, Mclaughlin WL, Ebraheem Eid SE, Miller A (1996) Radiat Phys Chem 47:483Google Scholar
  110. Kovács A, Baranyai M, Wojnárovits L, Moussa A, Othman I, Mclaughlin WL (1999) Radiat Phys Chem 55:795Google Scholar
  111. Kovács A, Baranyai M, Wojnárovits L, Mclaughlin WL, Miller SD, Miller A, Fuochi PG, Lavalle M, Slezsák I (2000a) Radiat Phys Chem 57:691Google Scholar
  112. Kovács A, Baranyai M, Wojnárovits L, Slezsák I, Mclaughlin WL, Miller A, Moussa A (2000b) Radiat Phys Chem 57:711Google Scholar
  113. Kovács A, Baranyai M, Wojnárovits L, Miller SD, Murphy M, Mclaughlin WL, Slezsák I, Kovács AI (2002) Radiat Phys Chem 63:777Google Scholar
  114. Krebs AT (1963) In: Clark GL (ed) The encyclopedia of X-rays and gamma rays. Reinhold Publishing, New York, p 274Google Scholar
  115. Kreidl NJ, Blair GE (1956) Nucleonics 14:56Google Scholar
  116. Kreidl NJ, Blair GE (1959) Nucleonics 17:58Google Scholar
  117. Kriminskaya ZK, Makshanova NP, Dyumaev KM, Pikaev AK (1987) High Energy Chem 22:412Google Scholar
  118. Lakshmanan AR, Bhatt RC (1979) Phys Med Biol 24:1258Google Scholar
  119. Lakshmanan AR, Bhuwanchandra Bhatt RC (1978) Nucl Instrum Methods 153:431Google Scholar
  120. Matthews RW (1981) J Appl Radiat Isot 32:861Google Scholar
  121. Matthews RW (1982) In: McLaughlin WL (ed) Trends in radiation dosimetry. Pergamon, Oxford; Int J Appl Radiat Isot 33:1159Google Scholar
  122. Mattson LO, Johansson KA (1982) Acta Radiol Oncol 21:139Google Scholar
  123. Mcdonald JC, Pinkerton AP, Weiss H, Epp ER (1972) Radiat Res 49:495Google Scholar
  124. Mcdonald JC, Laughlin JS, Freeman RE (1976) Med Phys 3:80Google Scholar
  125. McEwen MR, Dusatuoy AR (2009) Metrologica 46:59Google Scholar
  126. Mclaughlin WL (1966) Int J Appl Radiat Isot 17:85Google Scholar
  127. Mclaughlin WL (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, chapter 5. Marcel Dekker, New York, p 129Google Scholar
  128. Mclaughlin WL (1974) In: Gaughran ERL, Goudie AJ (eds) Sterilization by ionizing radiation, vol I. Multiscience, Montreal, p 219Google Scholar
  129. Mclaughlin WL (1977) Radiation processing. In: Silverman J, Van Dyken A (eds) Transactions of 1st international meeting, Puerto Rico, 1976, vol I; Radiat Phys Chem 9:147Google Scholar
  130. Mclaughlin WL (1978) National and international standardization in radiation dosimetry. In: Proceedings of symposium Atlanta, 1977, IAEA, STI/PUB/471, vol I. International Atomic Energy Agency, Vienna, p 89Google Scholar
  131. Mclaughlin WL (1983) Radiat Phys Chem 21:359Google Scholar
  132. Mclaughlin WL (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 357Google Scholar
  133. Mclaughlin WL (1988) In: Bögl KW, Regulla DF, Suess MJ (eds) Health impact, identification and dosimetry of irradiated foods, ISH Report 125, proceedings of WHO workshop, Neuherberg/Munich, 1986, Intitut für Strahlenhygieje des Bundesgesundheitsamt, Neuherberg/Munich, p 384Google Scholar
  134. Mclaughlin WL (1996) In: Proceedings of the 11th international conference on solid state dosimetry, Budapest; Radiat. Prot. Dosimetry 66:197Google Scholar
  135. Mclaughlin WL, Chalkley L (1965) Photogr Sci Eng 9:195Google Scholar
  136. Mclaughlin WL, Kosanic MM (1974) Int J Appl Radiat Isot 25:249Google Scholar
  137. Mclaughlin WL, Hussmann EK, Eisenlohr HH, Chalkley L (1971) Int J Appl Radiat Isot 22:135Google Scholar
  138. Mclaughlin WL, Humphreys JC, Radak BB, Miller A, Olejnik TA (1979a) Advances in radiation processing. In: Silverman J (ed) Transactions of second international meeting, Miami, 1978, vol II; Radiat Phys Chem 14:535Google Scholar
  139. Mclaughlin WL, Lucas AC, Kapsar BM, Miller A (1979b) Radiat Phys Chem 14:467Google Scholar
  140. Mclaughlin WL, Miller A, Ellis SC, Lucas AC, Kapsar BM (1980) Nucl Instrum Methods 175:17Google Scholar
  141. Mclaughlin WL, Uribe RM, Miller A (1983) Radiation processing. In: Markovic V (ed) Transactions of 4th international meeting, Dubrovnik, 1982, vol II; Radiat Phys Chem 22:333Google Scholar
  142. Mclaughlin WL, Ba W-Z, Chappas WJ (1988) Progress in radition processing. In: Fraser FM (ed) Proceedings of 6th international symposium, Ottawa, 1987, vol II; Radiat Phys Chem 31:481Google Scholar
  143. Mclaughlin WL, Boyd AW, Chadwick KH, Mcdonald JC, Miller A (1989) Dosimetry for radiation processing. Taylor and Francis, London/New York/Philadelphia, pp 81, 113, 140Google Scholar
  144. Mclaughlin WL, Khan HM, Warasawas W, Al-sheikhly M, Radak BB (1989b) Radiat Phys Chem 33:39Google Scholar
  145. Mclaughlin WL, Desrosiers MF, Saylor MC (1993) In: Morissey RF (ed) Sterilization of medical products, vol VI. Polysciences Publications, Morin Heights, p 213Google Scholar
  146. Mclaughlin WL, Al-sheikhly M, Lewis DF, Kovács A, Wojnárovits L (1994) Polym Prepr 35:920Google Scholar
  147. Mclaughlin WL, Puhl JM, Al-sheikhly M, Christou M, Miller A, Kovács A, Wojnárovits WL, Lewis DF (1996) Radiat Prot Dosim 66:263Google Scholar
  148. Mclaughlin WL, Miller SD, Saylor MC, Kovács A, Wojnárovits L (1999) Radiat Phys Chem 55:247Google Scholar
  149. Miller A (1984) J Indust Irradiat Techn 2(3–4):367Google Scholar
  150. Miller A (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, 1984, STI/PUB/671, International Atomic Energy Agency, Vienna, p 425Google Scholar
  151. Miller A (1995) In: Proceedings of the 9th international meeting on radiation processing; Radiat Phys Chem 46:1243Google Scholar
  152. Miller A, Kovács A (1985) Applications of accelerators in research and industry ’84. In: Proceedings of 8th conference, Denton, Texas, part II; Nucl Instrum Meth B10/11:994Google Scholar
  153. Miller A, Mclaughlin WL (1981) High-dose measurements in industrial radiation processing. Technical report series no. 205. IAEA Publication STI/DOC/10/205. International Atomic Energy Agency, Vienna, p 119Google Scholar
  154. Miller A, Mclaughlin WL (1982) In: McLaughlin WL (ed) Trends in radiation dosimetry. Pergamon, Oxford; J Appl Radiat Isot 33:1299Google Scholar
  155. Miller A, Xie L (1985) Food irradiation processing. In: Proceedings of symposium, Washington, 1985. IAEA, STI/PUB/695, International Atomic Energy Agency, Vienna, p 347Google Scholar
  156. Miller SD, Yoder C (1996) In: Proceedings of the 11th international conference on solid state dosimetry, Budapest; Radiat Prot Dosim 66:89Google Scholar
  157. Miller A, Bjergbakke E, Mclaughlin WL (1975) Int J Appl Radiat Isot 26:611Google Scholar
  158. Miller A, Batsberg W, Karman W (1988) Progress in radiation processing. In: Fraser FM (ed) Proceedings of 6th international meeting, Ottawa, 1987, vol II; Radiat Phys Chem 31:491Google Scholar
  159. Miller A, Kovács A, Wieser A, Regulla DF (1989a) In: Proceedings of 2nd international symposium on ESR dosimetry and applications, Neuherberg/Munich, 1988; Appl Radiat Isot 40:967Google Scholar
  160. Miller SD, Stahl KA, Endres GWR, Mcdonald JC (1989b) Radiat Prot Dosim 22:195Google Scholar
  161. Miller SD, Endres GWR, Mcdonald JC, Swinth KL (1991) Radiat Prot Dosim 35:201Google Scholar
  162. Miller A, Kovács A, Kuntz F (2002) Radiat Phys Chem 63:739Google Scholar
  163. Milwy P, Genna S, Barr NF, Laughlin JS (1958) In: Proceedings of 2nd international conference, peaceful uses of atomic energy, Genev, Columiba University Press, New York, p 142Google Scholar
  164. Mott NF, Gurney RW (1948) Electronic processes in ionic crystals, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  165. Muller AC (1970a) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry. Marcel Dekker, New York, p 423Google Scholar
  166. Muller AC (1970b) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry. Marcel Dekker, New York, p 429Google Scholar
  167. Murray KM, Attix FH (1973) Health Phys 25:169Google Scholar
  168. Nakayima T (1982) In: McLaughlin WL (ed) Trends in radiation dosimetry. Pergamon, Oxford; Int J Appl Radiat Isot 33:1077Google Scholar
  169. Niroomand-Rad A, Blackwell CR, Coursey BM, Gall KP, Galvin JM, Mclaughlin WL, Meigooni AS, Nath R, Rodgers JE, Soares CG (1998) Med Phys 25:2093Google Scholar
  170. Ostrowski K (1974) In: Gaughran ERL, Goudie AJ (eds) Sterilization by ionizing radiation, vol I. Multiscience Publications, Montreal, p 325Google Scholar
  171. Osvay M, Bíró T (1980) Nucl Instrum Methods 175:60Google Scholar
  172. Osvay M, Stenger V, Földiák G (1975) Biomedical dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/401, International Atomic Energy Agency, Vienna, p 347Google Scholar
  173. Parker RP (1970) Phys Med Biol 15:605Google Scholar
  174. Pesek M (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 263Google Scholar
  175. Petree B, Lamperti P (1967) J Res Natl Bur Stand 71C:19Google Scholar
  176. Puig JR, Laizier J, Sundardi F (1974) Radiosterilization of medical products. In: Proceedings of symposium, Bombay, 1974, IAEA, STI/PUB/383, International Atomic Energy Agency, Vienna, p 113Google Scholar
  177. Puite KJ, Ettinger KV (1982) Int J Appl Radiat Isot 33:1139Google Scholar
  178. Radak BB, Markovic V (1962) Int J Appl Radiat Isot 13:287Google Scholar
  179. Radak BB, Markovic VM (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, chapter 3. Marcel Dekker, New York, p 45Google Scholar
  180. Radak BB, Mclaughlin WL (1984) Radiat Phys Chem 23:673Google Scholar
  181. Radak BB, Hjortenberg PE, Holm NW (1973) Dosimetry in agriculture, industry, biology and medicine. In: Proceedings of symposium, IAEA, STI/PUB/311, International Atomic Energy Agency, ViennaGoogle Scholar
  182. Rageh MSJ, El-behay AZ, Soliman FAS (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 255Google Scholar
  183. Razem D, Dvornik I (1973a) Dosimetry in agriculture, industry, biology, and medicine. In: International Atomic Energy Agency (ed) Proceedings of symposium, Vienna 1972, IAEA STI/PUB/311, International Atomic Energy Agency, Vienna, p 405Google Scholar
  184. Razem D, Dvornik I (1973b) Radiation preservation of food. In: International Atomic Energy Agency (ed) Proceedings of symposium, Bombay 1972, IAEA STI/PUB/317, International Atomic Energy Agency, Vienna, p 537Google Scholar
  185. Razem D, Ocic G, Jamicic J, Dvornik I (1981) Int J Appl Radiat Isot 32:705Google Scholar
  186. Regulla DF (1972) Health Phys 22:491Google Scholar
  187. Regulla DF, Deffner U (1982) In: McLaughlin WL (ed) Trends in radiation dosimetry. Pergamon, Oxford; Int J Appl Radiat Isot 33:1101Google Scholar
  188. Regulla DF, Deffner U (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 221Google Scholar
  189. Saylor MC, Tamargo TT, Mclaughlin WL, Khan HM, Lewis DF, Schenfele RD (1988) Radiat Phys Chem 31:529Google Scholar
  190. Sehested K (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry, part 2. Marcel Dekker, New York, p 313Google Scholar
  191. Sehested K, Bjergbakke E, Holm NW, Fricke H (1973) Dosimetry in agriculture, industry, biology and medicine. In: International Atomic Energy Agency (ed) Proceedings of symposium Vienna 1972, IAEA STI/PUB/311, International Atomic Energy Agency, Vienna, p 397Google Scholar
  192. Seuntjens J, Duane S (2009) Metrologia 46:39Google Scholar
  193. Sharpe PHG, Miller A (1999) Guidelines for the calibration of dosimeters for use in radiation processing, NPL report CIRM 29, p 1Google Scholar
  194. Sharpe PHG, Barrett JJ, Berkley AM (1985) Int J Appl Radiat Isot 36:647Google Scholar
  195. Sharpe PHG, Sephton JP, Gouldstone CA (2009a) Radiat Phys Chem 78(7–8):477Google Scholar
  196. Sharpe PHG, Miller A, Sephton JP, Gouldstone CA, Bailey M, Helt-Hansen J (2009b) Radiat Phys Chem 78(7–8):473Google Scholar
  197. Smathers JB, Otte VA, Smith AR, Almond PR, Attix FH, Spokas JJ, Quam WM, Goodman LJ (1977) Med Phys 4:74Google Scholar
  198. Tamura N, Tanaka R, Mitomo S, Matsuda K, Nagai S (1981) Radiat Phys Chem 18:947Google Scholar
  199. Tanaka R, Mitomo S, Tamura N (1984) Int J Appl Radiat Isot 35:875Google Scholar
  200. Temperton DJ, Dixon SM, Shentall GS, Ettinger KV (1984) J Appl Radiat Isot 35:139Google Scholar
  201. Thomassen J (1985) High-dose dosimetry. In: Proceedings of symposium, IAEA, 1984, STI/PUB/671, International Atomic Energy Agency, Vienna, p 171Google Scholar
  202. Van Laere K, Buysse J, Berkvens P (1989) Appl Radiat Isot 40:885Google Scholar
  203. Weast RC (ed) (1977–1978) CRC handbook of chemistry and physics, 58th edn. CRC Press, ClevelandGoogle Scholar
  204. Weiss J (1952) Nucleonics 10(7):28Google Scholar
  205. Weyde E, Frankenburger W (1931) Trans Faraday Soc 27:561Google Scholar
  206. Whitakker B (1970) In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry. Marcel Dekker, New York, p 363Google Scholar
  207. Whitakker B (1988) Dosimetry and control of radiation processing. In: Proceedings of symposium of UK panel on gamma and electron irradiation, Teddington, 1987. NPL Report RS (EST) 7, National Physical Laboratory, Teddington, p 18Google Scholar
  208. Whitakker B, Watts M, Mellor S, Heneghan M (1985) High-dose dosimetry. In: Proceedings of symposium, Vienna, 1984, IAEA, STI/PUB/671, International Atomic Energy Agency, Vienna, p 293Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • W. L. McLaughlin
    • 1
  • A. Miller
    • 2
  • A. Kovács
    • 3
  • K. K. Mehta
    • 4
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Risø High Dose Reference LaboratoryRisø-DTU, Technical University of DenmarkRoskildeDenmark
  3. 3.Hungarian Academy of SciencesBudapestHungary
  4. 4.ViennaAustria

Personalised recommendations