Tracer Technique


In radioactive tracer technique, radioactive nuclides are used to follow the behavior of elements or chemical species in chemical and other processes. This is realized by means of radioactivity measurement. In 1913, Hevesy and Paneth succeeded in determining the extremely low solubility of lead salts by using naturally occurring 210Pb as a radioactive tracer. As various radioactive nuclides became artificially available, this technique has been widely employed in studies of chemical equilibrium and reactions as well as in chemical analysis. It is also an essential technique in biochemical, biological, medical, geological, and environmental studies. Medical diagnosis and industrial process control are the fields of its most important practical application. In this chapter, fundamental ideas concerning radioactive tracers will be described followed by their application with typical examples. Detailed description on their application to life sciences and medicine is given in Vol. 4.


Radioactive Tracer Radioactive Nuclide Isotope Dilution Analysis Radioactive Tracer Technique Compton Camera 


  1. Ambe S, Chen SY, Ohkubo Y, Kobayashi Y, Iwamoto M, Yanokura M, Ambe F (1991) Chem Lett 1991:149CrossRefGoogle Scholar
  2. Ambe S, Chen SY, Ohkubo Y, Kobayashi Y, Maeda H, Iwamoto M, Yanokura M, Takematsu N, Ambe F (1995) J Radioanal Nucl Ch 195:297CrossRefGoogle Scholar
  3. Ambe F (2000) J Radioanal Nucl Ch 243:21CrossRefGoogle Scholar
  4. Ambe S, Ozaki T, Weginwar RG, Enomoto S, Ambe F (2001) Radiochim Acta 89:63CrossRefGoogle Scholar
  5. Amemiya Y, Miyahara J (1988) Nature 336:89CrossRefGoogle Scholar
  6. Armstrong WD, Schubert J (1947) Science 106:403CrossRefGoogle Scholar
  7. Arnstein HRV, Bentley R (1950) Nucleonics 6(6):11Google Scholar
  8. Bassham JA, Calvin M (1957) The path of carbon in photosynthesis. Prentice-Hall, New YorkGoogle Scholar
  9. Benson AA, Bassham JA, Calvin M, Goodale TC, Haas VA, Stepka W (1950) J Am Chem Soc 72:1710CrossRefGoogle Scholar
  10. Black C, Joris GG, Taylor HS (1948) J Chem Phys 16:537CrossRefGoogle Scholar
  11. Braun T, Tölgyessy J (1967) Radiometric titrations. International series of monographs in analytical chemistry, vol 29. Pergamon, New YorkGoogle Scholar
  12. Charlton JS (ed) (1986) Radioisotope techniques for problem solving in industrial process plants. Gulf Publishing, HoustonGoogle Scholar
  13. Choppin GR, Liljenzin J-O, Rydberg J (2002) Radiochemistry and nuclear chemistry, 3rd edn. Butterwort-Heinemann, WoburnGoogle Scholar
  14. Conway D, Libby WF (1958) J Am Chem Soc 80:1077CrossRefGoogle Scholar
  15. Cowley WE, Lott B, Brown S (1966) Chem Engr Lond 204:345Google Scholar
  16. Dodson RW (1950) J Am Chem Soc 72:3315CrossRefGoogle Scholar
  17. Egawa C, Takahashi Y, Enomoto S, Hirunuma R, Shimizu H (2001) RIKEN Rev 35:96Google Scholar
  18. Elving PJ (1986) Treatise on analytical chemistry, part1: theory and practice, vol 14. Section K, Nuclear activation and radioisotopic methods of analysis. Wiley, New YorkGoogle Scholar
  19. Enomoto S, Kawakami Y, Senoo M, Imahashi T, Tachikawa N, Tominaga H (1975) Int J Appl Radiat Isot 26:671CrossRefGoogle Scholar
  20. Ferronsky Y, Guizerix J, Leonhardt J, Niemi A, Przewlocki K, Sevel T (eds) (1990) Guidebook on radioisotope tracers in industry. International Atomic Energy Agency, WienGoogle Scholar
  21. Földiák G (ed) (1986) Industrial applications of radioisotopes. Elsevier, AmsterdamGoogle Scholar
  22. Guillaumont R, Adloff JP, Peneloux A (1989) Radiochim Acta 46:169Google Scholar
  23. Haba H, Kaji D, Kanayama Y, Igarashi K, Enomoto S (2005) Radiochim Acta 93:539CrossRefGoogle Scholar
  24. Hevesy G, Paneth F (1913) Z Anorg Chem 82:323CrossRefGoogle Scholar
  25. Hevesy G, Obrutsheva A (1925) Nature 115:674CrossRefGoogle Scholar
  26. Hevesy G, Seith W (1929) Z Phys 56(790):869Google Scholar
  27. Hughes ED, Juliusburger F, Masterman S, Topley B, Weiss J (1935) J Chem Soc 1935:1525CrossRefGoogle Scholar
  28. Joris GG, Taylor HS (1948) J Chem Phys 16:45CrossRefGoogle Scholar
  29. Kubo T (2003) Nucl Instrum Meth B 204:97CrossRefGoogle Scholar
  30. Lieser KH (1957) Z Anorg Allg Chem 292:97CrossRefGoogle Scholar
  31. Lieser KH (2001) Nuclear and radiochemistry, 2 revised edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  32. Liu Y, Guo Z, Liu X, Qu T, Xie J (1994) Pure Appl Chem 66:305CrossRefGoogle Scholar
  33. Loftfield RB (1950) J Am Chem Soc 72:632CrossRefGoogle Scholar
  34. Logan SR (1990) J Chem Educ 67:371CrossRefGoogle Scholar
  35. Motomura S, Enomoto S, Haba H, Igarashi K, Gono Y, Yano Y (2007) IEEE T Nucl Sci 54:710CrossRefGoogle Scholar
  36. Motomura S, Fukuchi T, Kanayama Y, Haba H, Watanabe Y, Enomoto S (2009) IEEE NSS Conference Record M09–281:3330Google Scholar
  37. Motomura S, Kanayama Y, Haba H, Watanabe Y, Enomoto S (2008) J Anal At Spectrom 23:1089CrossRefGoogle Scholar
  38. Myers OE, Kennedy JW (1950) J Am Chem Soc 72:897CrossRefGoogle Scholar
  39. Paneth F, Vorwerk W (1922) Z Phys Chem 101:445Google Scholar
  40. Qaim SM (1982) Radiochim Acta 30:147Google Scholar
  41. Roberts TR (1979) Radiochromatography: the chromatography and electrophoresis of radiolabelled compounds. Elsevier, AmsterdamGoogle Scholar
  42. Ropp GA, Neville OK (1951) Nucleonics 9(2):22Google Scholar
  43. Ruzicka J, Stary J (1968) Substoichiometry in radiochemical analysis. International series of monographs in analytical chemistry, vol 30. Pergamon, New YorkGoogle Scholar
  44. Schoenfelder V (1973) Nucl Instrum Methods 107:385CrossRefGoogle Scholar
  45. Silverman J, Dodson RW (1952) J Phys Chem 56:846CrossRefGoogle Scholar
  46. Sonoda M, Takano M, Miyahara J, Kato H (1983) Radiology 148:833Google Scholar
  47. Stary J, Ruzicka J (1976) Substoichiometric analytical methods. In: Svehla G (ed) Comprehensive analytical chemistry, vol 7. Elsevier, Amsterdam, p 207Google Scholar
  48. Sueki K, Kikuchi K, Akiyama K, Sawa T, Katada M, Ambe S, Ambe F, Nakahara H (1999) Chem Phys Lett 300:140CrossRefGoogle Scholar
  49. Sutin N (1962) Ann Rev Nucl Sci 12:285CrossRefGoogle Scholar
  50. Tamano H, Enomoto S, Hirunuma R, Takeda A (2001) RIKEN Rev 35:57Google Scholar
  51. Tanihata I (2004) Nucl Phys A734:271Google Scholar
  52. Taube H (1952) Chem Rev 50:69CrossRefGoogle Scholar
  53. Tölgyessy J, Braun T (1972) Isotope dilution analysis. Pergamon Press, OxfordGoogle Scholar
  54. Wahl AC, Bonner NA (1951) Radioactivity applied to chemistry. Wiley, New YorkGoogle Scholar
  55. Waters SL, Silvester DJ (1982) Radiochim Acta 30:163Google Scholar
  56. Wilson JN, Dickinson RG (1937) J Am Chem Soc 59:1358CrossRefGoogle Scholar
  57. Yang YF, Gono Y, Motomura S, Enomoto S, Yano Y (2001) IEEE T Nucl Sci 48:656CrossRefGoogle Scholar
  58. Zimens KE (1937) Z Phys Chem B37:231Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • H. Haba
    • 1
    • 2
  • S. Motomura
    • 2
  • S. Kamino
    • 3
  • S. Enomoto
    • 1
    • 2
    • 3
  1. 1.RIKEN Wako InstituteWakoJapan
  2. 2.RIKEN Kobe InstituteKobeJapan
  3. 3.Okayama UniversityOkayamaJapan

Personalised recommendations