Advertisement

Chemical Applications of Ion Accelerators

  • E. Koltay
  • F. Pászti
  • Á. Z. Kiss

Abstract

This chapter discusses the basic principles of analytical methods based on positive ion beams from particle accelerators. The methods, namely, particle-induced X-ray emission (PIXE), Rutherford backscattering spectroscopy (RBS), and nuclear reaction analysis (NRA) are described in detail. Besides the underlying physical processes, methodical questions, analytical capabilities, and typical fields of application are also discussed.

Keywords

Atomic Number Nuclear Reaction Light Element Particle Accelerator Beam Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahlenberg M, Johansson G, Malmqvist K (1975) Nucl Instrum Methods 131:377Google Scholar
  2. Amsel G, D’Artemare E, Girard E (1983) Nucl Instrum Methods 205:5Google Scholar
  3. Amsel G, Lanford WA (1984) Ann Rev Nucl Part Sci 34:435Google Scholar
  4. Amsel G, Pászti F, Szilágyi E, Gyulai J (1992) Nucl Instrum Meth B 63:421Google Scholar
  5. Amsel G, Samuel D (1962) J Phys Chem Solids 23:1707Google Scholar
  6. Andersson F, Barbaret Ph, Incerti S, Moretto Ph (2008) Nucl Instr Meth B 266:1653–1658Google Scholar
  7. Arai E, Funaki H, Katayama M, Oguri Y, Shimizu K (1992) Nucl Instrum Meth B 64:296Google Scholar
  8. Arnold Bik WM, de Laat CTAM, Habraken FHPM (1992) Nucl Instrum Meth B 64:832Google Scholar
  9. Assmann W (1992) Nucl Instrum Meth B 64:267Google Scholar
  10. Barbour JC, Doyle BL (1995) In: Tesmer JR, Nastasi M (eds) Handbook of modern ion beam materials analysis, Chapter 5. MRS, Pittsburgh, pp 83–138Google Scholar
  11. Barradas NP, Jeynes C, Webb RP (1997) Appl Phys Lett 71:291Google Scholar
  12. Barradas NP, Arstila K, Battistig G, Bianconi M, Dytlewski N, Jeynes C, Kótai E, Lulli G, Mayer M, Rauhala E, Szilágyi E, Thompson M (2007) Nucl Instrum Meth B 262:281Google Scholar
  13. Bartha L, Uzonyi I (2000) Nucl Instrum Meth B 161–163:339Google Scholar
  14. van Bebber H, Borucki L, Farzin K, Kiss AZ, Schultr WH (1998) Nucl Instr Meth B 136:72–76Google Scholar
  15. Behrooz AM, Headrick RL, Seiberling LE, Zurmuhle RW (1987) Nucl Instrum Meth B 28:108Google Scholar
  16. Berger MJ, Hubbel M (1987) NBSIR 87-3597. http://physics.nist.gov/cgi/bin/Xcom/xcom3_l-t
  17. Berger P, Gaillet L, El Tahhann R, Moulin G, Viennot M (2001) Nucl Instrum Meth B 181:382Google Scholar
  18. Bird JR, Williams JS (1989) Ion beams for materials analysis. Academic, SidneyGoogle Scholar
  19. Blaauw M, Campbell JL, Fazinis S, Jaksic M, Orlic I, Van Espen P (2002) Nucl Instrum Meth B 189:113Google Scholar
  20. Bogdanovic I, Fazinic S, Jaksic M, Grime GW, Valkovic V (1994) Nucl Instrum Meth B 85:732Google Scholar
  21. Bolse W, Gustafsson M, Harbsmeier F, Roccaforte F (2000) Nucl Instrum Meth B 161–163:641Google Scholar
  22. Borbély-Kiss I, Józsa M, Kiss ÁZ, Koltay E, Nyakó B, Somorjai E, Szabó G, Seif El-Nasr SJ (1985) Radioanal Nucl Chem 92:391Google Scholar
  23. Brissaud I, Frontier JP, Regnier P (1985) Nucl Instrum Meth B 12:235Google Scholar
  24. Budnar MO, Campbell JL (eds) (2005) X-Ray Spectrometry 34(4):263–399Google Scholar
  25. Calligaro T, Dran J-C, Poirot J-P, Querré G, Salomon J, Zwaan JC (2000) Nucl Instrum Meth B 161–163:769Google Scholar
  26. Campbell JL (ed) (2002) Nucl Instr Meth B 189:1–519Google Scholar
  27. Cherniak DJ, Lanford WA (2001) In: Alfasi ZB (ed) Non-destructive elemental analysis, Chapter 8, Blackwell Science Ltd, UK, pp 308–338Google Scholar
  28. Chu W-K, Mayer JW, Nicolet M-A (1978) Backscattering spectrometry. Academic Press, New YorkGoogle Scholar
  29. Cohen DD, Harrigan M (1985) At Data Nucl Data Tables 33:255–344Google Scholar
  30. Composto RJ, Walters RM, Genzer J (2002) Mat Sci Eng R 38:107Google Scholar
  31. Coote GE, Cutress TW, Suckling GW (1997) Nucl Instrum Meth B 130:571Google Scholar
  32. Da Rosa EBO, Krug C, Stedile FC, Morais JIJR (2002) Nucl Instrum Meth B 190:538Google Scholar
  33. Davies JC (1973) In: Morgan DV (ed) Channeling: theory, observations and applications. Wiley, New York, p 391Google Scholar
  34. Deconninck G (1978) Introduction to radioanalytical physics. Akadémiai Kiadó, BudapestGoogle Scholar
  35. Demortier G (ed) (1982) Nucl Instr Meth B 197:65–170Google Scholar
  36. Doolittle LR (1986) Nucl Instrum Meth B 15:227Google Scholar
  37. Doyle BL, Maggiore CJ, Bench G (eds) (1997) Nucl Instr Meth B B130:1–750Google Scholar
  38. Ecker KH, Krauser J, Weidinger A, Weise HP, Maser K (2000) Nucl Instrum Meth B 161–163:682Google Scholar
  39. Elekes Z, Kiss ÁZ, Biron I, Calligaro T, Salomon J (2000) Nucl Instrum Meth B 168:305Google Scholar
  40. Elekes Z, Kiss ÁZ, Gyürky G, Somorjai E, Uzonyi I (1999) Nucl Instrum Meth B 158:209Google Scholar
  41. Elekes Z, Szöőr G, Kiss ÁZ, Rózsa P, Simon A, Uzonyi I, Simulák J (2002) Nucl Instrum Meth B 190:291Google Scholar
  42. Feldman LC, Mayer JW (1986) In: Fundamentals of surface and thin film analysis, Chapter 12. North-Holland, New York, pp 283–310Google Scholar
  43. Feldman LC, Mayer JW, Picraux ST (1982) Materials analysis by ion channeling. Academic, New YorkGoogle Scholar
  44. Folkmann J (1975) J Phys E Sci Instrum 8:429Google Scholar
  45. Gallien J-P, Gouget B, Carrot F, Orial G, Brunet A (2001) Nucl Instrum Meth B 181:382Google Scholar
  46. Gardner RK, Gray TJ (1978) At Data Nucl Data Tables 21:515–536Google Scholar
  47. Gihwala D, Peisach M (1982) J Radioanal Chem 70:287Google Scholar
  48. Glass GA, Dymnikov AD, Rout B, Zachry DA (2007) Nucl Instr Meth B 260:372–377Google Scholar
  49. Gorleau R, Gujrathi SC, Martin JP (1983) Nucl Instrum Methods 218:11Google Scholar
  50. Grime GW, Watt F (eds) (1988) Nucl Instr Meth B B30:227–497Google Scholar
  51. Gujrathi SC, Bultena S (1992) Nucl Instrum Meth B 64:789Google Scholar
  52. Gurbich A, Bogdanovic-Radovic I, Chiari M, Jeynes C, Kokkoris M, Ramos AR, Mayer M, Rauhala E, Schwerer O, Liqun SHI, Vickridge I (2008) Nucl Instrum Meth B 266:1198Google Scholar
  53. Ishii A, Nakamura K (1993) Nucl Instrum Meth B 75:388Google Scholar
  54. Jaksic M, Bogdanovic I, Cereda E, Eazinic S, Valkovic V (1993) Nucl Instrum Meth B 77:505Google Scholar
  55. Jaksic M, Bogdanovic Radovic I (eds) (2005) Nucl Instr Meth B 231:1–556Google Scholar
  56. Jankuhn S, Vogt J, Butz T (2000) Nucl Instrum Meth B 161–163:894Google Scholar
  57. Jans S, Kalbitzer S, Oberschachtsiek P (1994) Nucl Instrum Meth B 85:321Google Scholar
  58. Jembrih D, Neelmeijer C, Schreiner M, Mäder M, Ebel M, Svagera R, Peev M (2001) Nucl Instrum Meth B 181:698Google Scholar
  59. Jesus AP, Braizinha B, Ribero JP (2000) Nucl Instrum Meth B 161:186Google Scholar
  60. Johansson SAE (ed) (1977) Nucl Instr Meth 142:1–338Google Scholar
  61. Johansson SAE (ed) (1981) Nucl Instr Meth 181:1–537Google Scholar
  62. Johansson SAE, Campbell JL (1988) PIXE: a novel technique for elemental analysis. Wiley, ChichesterGoogle Scholar
  63. Johansson SAE, Campbell JL, Malmqvist KG (1995) Particle induced X-ray emission spectroscopy (PIXE). In: Winefordner JD (ed) Chemical analysis: a series of monographs on analytical chemistry and its applications, vol 133. Wiley, New YorkGoogle Scholar
  64. Johansson SAE, Johansson TB (1976) Nucl Instrum Methods 137:473–516Google Scholar
  65. Katsanos A, Xenoulis A, Hadjiantoniou A, Fink RW (1976) Nucl Instrum Methods 137:119Google Scholar
  66. Khan AH, Khaliquzzaman M, Husain M, Abdullah M, Katsanos AA (1979) Nucl Instrum Methods 165:253Google Scholar
  67. Kiss ÁZ, Biron I, Calligaro T, Salomon J (1994) Nucl Instrum Meth B 85:118Google Scholar
  68. Kiss ÁZ, Koltay E, Nyakó BM, Somorjai E, Anttila A, Räisänen J (1985) J Radioanal Chem 89:123Google Scholar
  69. Klein SS (1986) Nucl Instrum Meth B 15:464Google Scholar
  70. Koltay E (1988) Particle induced X-ray emission: basic principles, instrumentation and interdisciplinary applications. In: Ferreira JG, Ramos MT (eds) X-ray spectroscopy in atomic and solid state physics, NATO ASI Series, Series B: Physics, vol 187. Plenum Press, New York, pp 301–334Google Scholar
  71. Kótai E (1994) Nucl Instrum Meth B 85:588Google Scholar
  72. Lanford WA (1992) Nucl Instrum Meth B 66:65Google Scholar
  73. L´Ecuyer J, Brassard C, Cardinal C, Chabbal J, Deschenes L, Labrie JP, Terreault B, Martel JG, St-Jacques R (1976) J Appl Phys 47:881Google Scholar
  74. Leavitt JA, McIntyre LC Jr, Weller MR (1995) In: Tesmer JR, Nastasi M (eds) Handbook of modern ion beam materials analysis, Chapter 4. MRS, Pittsburgh, pp 37–81Google Scholar
  75. Legge GJF, Jamieson DN (eds) (1991) Nucl Instr Meth B 54:1–440Google Scholar
  76. Leroux J, Think TP (1977) Revised tables of X-ray mass attenuation coefficients. Corporation Scientifique Claisse, QuebecGoogle Scholar
  77. Lindh U (ed) (1993 ) Nucl Instr Meth B 77:1–547Google Scholar
  78. Lipworth AD, Annegarn HJ, Kneen MA (1993) Nucl Instrum Meth B 75:127Google Scholar
  79. Malmqvist KG (ed) (1999) Nucl Instr Meth B 150:1–682Google Scholar
  80. Manuaba A, Pászti F, Ortega C, Grosman A, Horváth ZE, Szilágyi E, Khánh NQ, Vickridge I (2001) Nucl Instrum Meth B 179:63Google Scholar
  81. Markowicz A, Van Dyck P, Van Grieken R (1980) X-ray Spectrom 9:52Google Scholar
  82. Martin B (ed) (1984) Nucl Instr Meth B 3:1–699Google Scholar
  83. Martin G, Sauvage T, Desgardin P, Garcia P, Carlot G, Barthe MF (2007) Nucl Instrum Meth B 258:471Google Scholar
  84. Mateus R, Jesus AP, Ribeiro JP (2005) Nucl Instrum Meth B 229:302Google Scholar
  85. Maxwell JA, Campbell JL, Teesdale WJ (1989) Nucl Instrum Meth B 43:218Google Scholar
  86. Mayer M (1997) Report IPP, 9/113, GarchingGoogle Scholar
  87. Miranda J, Ruvalcaba-Sil (eds) (2008) X-ray spectrometry 37(2):94–197Google Scholar
  88. Moore J (1980) Nucl Instrum Methods 174:577Google Scholar
  89. Moretto PH, Bonin Mosbah M (eds) (2001) Nucl Instr Meth B 181:1–759Google Scholar
  90. Moschini G, Valkovic V (eds) (1996) Nucl Instr Meth B 109/110:1–703Google Scholar
  91. Murillo G, Policroniades R, Tenorio D, Méndez B, Andrade E, Pineda JC, Zavala EP, Torres JL (1998) Nucl Instrum Meth B 136–138:888Google Scholar
  92. Osipovicz T, Breeze MBH, Watt F, van Kan JA, Bettiol AA (eds) (2007) Nucl Instr Meth B 158:1–482Google Scholar
  93. Pászti F, Szilágyi E (1998) Vacuum 50:451Google Scholar
  94. Pathak AP, Avasthi DK, Dev BN (eds) (2008) Nucl Instr Meth B 266:1149–1932Google Scholar
  95. Peisach M, Pretorius R (1973) J Radioanal Chem 16:559Google Scholar
  96. Petukhov VP, Terasova M, Török I (1999) Nucl Instr Meth B 150:103–108Google Scholar
  97. Piel N, Schulte WH, Berheide M, Becker HW, Borucki L, Grama C, Mehrhof M, Rolfs C (1996) Nucl Instrum Meth B 118:186Google Scholar
  98. PrOzesky VM, Przybylowicz WJ, Pineda CA (eds) (1999) Nucl Instr Meth B 158:1–735Google Scholar
  99. Räisänen J (2001) In: Alfasi ZB (ed) Non-destructive elemental analysis, Chapter 8. Blackwell Science, UK, pp 276–307Google Scholar
  100. Rajta I, Kiss ÁZ, Kertész ZS, Szikszai Z, Simon A (eds) (2009) Nucl Instr Meth B 267:1995–2340Google Scholar
  101. Rebouta L, Soares JC, da Silva MF, Sanz-Garcia JA, Dieguez E, Agullo-Lopez F (1992) J Mater Res 7:130Google Scholar
  102. Respaldiza MA, Madurga G, Soares JC (1987) Nucl Instrum Meth B 22:446Google Scholar
  103. Rickards J (1985) Nucl Instrum Meth B 12:269Google Scholar
  104. Rijken HA (1993) PhD thesis, Technical University of Eindhoven, EindhovenGoogle Scholar
  105. Rijken HA, Klein SS, de Voigt MJA (1992) Nucl Instrum Meth B 64:395Google Scholar
  106. Ryan CG, Cousens DR, Sie SH, Griffin WL (1990) Nucl Instrum Meth B 49:271Google Scholar
  107. Salomon J, Dran JC, Guillou T, Moignard B, Pichon L, Walter L, Mathis F (2008) Nucl Instrum Meth B 266:2273Google Scholar
  108. Sera K, Futatsugawa S (1996) Nucl Instrum Meth B 109/110:99Google Scholar
  109. Sevier KD (1979) At Data Nucl Data Tables 24:323–371Google Scholar
  110. Sjöland KA, Kristiansson P, Elfman M, Malmqvist KG, Pallon J, Utui RJ, Yang C (1997) Nucl Instrum Meth B 129:101Google Scholar
  111. Smit Z, Budnar M, Cindro V, Ravnikar M, Ramsak V (1984) Nucl Instrum Meth B 4:114Google Scholar
  112. Swanson ML (1995) In: Tesmer JR, Nastasi M (eds) Handbook of modern ion beam materials analysis, Chapter 10. MRS, Pittsburgh, pp 231–300Google Scholar
  113. Szabó G, Borbély-Kiss I (1993) Nucl Instrum Meth B 75:123Google Scholar
  114. Szabó G, Borbély-Kiss I (1999) PIXEKLM program package for evaluation of PIXE spectra. ATOMKI, Debrecen, HungaryGoogle Scholar
  115. Székely G (1985) Comput Phys Commun 34:423Google Scholar
  116. Sziki GÁ, Simon A, Szikszai Z, Kertész ZS, Dobos E (2006) Nucl Instrum Meth B 251:343Google Scholar
  117. Szikszai Z, Kertész ZS, Kocsár I, Oláh V (2008) Acta Biologica Szegediensis 52:81Google Scholar
  118. Szilágyi E, Pászti F (1994) Nucl Instrum Meth B 85:616Google Scholar
  119. Szőkefalvi-Nagy Z (1996) Nucl Instrum Meth B 109–110:234Google Scholar
  120. Szőkefalvi-Nagy Z, Demeter I, Bagyinka C, Kovács KL (1987) Nucl Instrum Meth B 22:156Google Scholar
  121. Szőkefalvi-Nagy Z, Kocsonya A, Kovács I, Hopff D, Lüthje S, Niecke M (2009) Nucl Instrum Meth B 267:2163Google Scholar
  122. Takai M (1995) Nucl Instrum Meth B 96:179Google Scholar
  123. Takai M, Kamiya T (eds) (2003) Nucl Instr Meth B 210:1–563Google Scholar
  124. Tesmer JR, Maggiore CJ, Nastasi M, Barbour JC, Mayer JW (1990) High energy and heavy ion beams in materials analysis. MRS, PittsburghGoogle Scholar
  125. Tesmer JR, Nastasi M (1995) In: Handbook of modern ion beam materials analysis. Materials Research Society, PittsburghGoogle Scholar
  126. Thomas JP, Fallavier M, Ziani A (1986) Nucl Instrum Meth B 15:443Google Scholar
  127. Timmers H, Weijers TDM, Elliman RG (2002) Nucl Instrum Meth B 190:393Google Scholar
  128. Trocellier P, Berger P, Berthier B, Berthoumieux E, Gallien JP, Metrich N, Moreau C, Mosbah M, Varela ME (1999) Nucl Instrum Meth B 158:221Google Scholar
  129. Trompetter WJ, Reyes AG, Vickridge IC, Markwitz A (1999) Nucl Instrum Meth B 158:568Google Scholar
  130. Uda M (ed) (1993) Nucl Instr Meth B 75:1–592Google Scholar
  131. Uhrmacher M, Schwickert M, Schebela H, Lieb K-P (2005) J Alloy Compd 404–406:307Google Scholar
  132. Uzonyi I, Rajta I, Bartha L, Kiss ÁZ, Nagy A (2001) Nucl Instrum Meth B 181:193Google Scholar
  133. Uzonyi I, Szabó GY (2005) Nucl Instrum Meth B 231:156Google Scholar
  134. Van Rinvelt H, Bauman S, Nelson JW, Winchester JW, (eds) (1987) Nucl Instr Meth B 22:1–475Google Scholar
  135. Végh J, Berényi D, Koltay E, Kiss I, Seif-El-Nasr S, Sarkadi L (1978) Nucl Instrum Methods 153:553Google Scholar
  136. Vekemans B, Jensens K, Vincze L, Adams F, Van Espen (1994) X- ray spectrometry 23:278Google Scholar
  137. Vis RD (ed) (1990) Nucl Instr Meth B 49:1–580Google Scholar
  138. Vízkelethy G (1990) Nucl Instrum Meth B 45:1Google Scholar
  139. Watt F, Rajta I, Ausari K, Bettiol AA, Osipowitz T (2002) Nucl Instr Meth B 90:306–311Google Scholar
  140. Watt F, Van Kan JA, Rajta I, Bettiol AA, Choo TF, Breese MBH, Osipowitz T (2003) Nucl Instr Meth B 210:14–20Google Scholar
  141. Watt F, Bettiol AA, van Kann JA, Ynsa MD, Ren Minqin, Rajendran R, Cui Huifang, Sheu Fwo-Shen, Jenner AM (2009) Nucl Instr Meth B 267:2113Google Scholar
  142. Wielunski LS, Grambole D, Kreissig U, Grötzschel R, Harding G, Szilágyi E (2002) Nucl Instrum Meth B 190:693Google Scholar
  143. Wilde M, Fukutani K (2005) Nucl Instrum Meth B 232:280Google Scholar
  144. Yang F, Tang J, Zhu J (eds) (1995) Nucl Instr Meth B 104:1–652Google Scholar
  145. Ziegler JF (1977) Helium stopping powers and ranges in all elements. Pergamon Press, OxfordGoogle Scholar
  146. Ziegler JF, Biersack JP, Ziegler MD (2002) SRIM stopping and range of ions in matter. http://www.srim.org/SRIM/SRIM2008.htm
  147. Ziegler JF, Biersack JP, Littmark U (1985) Stopping and ranges of ions in solids. Pergamon Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Nuclear Research (ATOMKI)Hungarian Academy of SciencesDebrecenHungary
  2. 2.KFKI Research Institute for Particle and Nuclear PhysicsBudapestHungary

Personalised recommendations