Advertisement

Nuclear and Radiochemistry: the First 100 Years

  • G. Friedlander
  • G. Herrmann
Reference work entry

Abstract

This chapter gives a brief overview of the development of nuclear and radiochemistry from Mme. Curie’s chemical isolation of radium toward the end of the twentieth century. The first four sections deal with fairly distinct time periods: (1) the pioneering years when the only radioactive materials available were the naturally occurring ones; (2) the decade of rapid growth and expansion of both the fundamental science and its applications following the discoveries of the neutron and artificial radioactivity; (3) the World War II period characterized by the intense exploration of nuclear fission and its ramifications; (4) what can be called the “golden era” – the 3 to 4 decades following World War II when nuclear science was generously supported and therefore flourished. In the final section, research trends pursued near the end of the century are briefly touched upon.

Keywords

Nuclear Reaction Fission Product Periodic Table Neutron Capture Compound Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abazov AI, Anosov OL, Faizov EL et al (1991) Search for neutrinos from the sun using the reaction 71Ga (νe, e-) 71Ge. Phys Rev Lett 67:3332Google Scholar
  2. Alvarez LW (1937) Nuclear K electron capture. Phys Rev 52:134Google Scholar
  3. Anger HO (1958) Scintillation camera. Rev Sci Instrum 29:27Google Scholar
  4. Anselmann P, Hampel W, Heusser G et al (1992a) Solar neutrinos observed by GALLEX at Gran Sasso. Phys Lett B 285:376Google Scholar
  5. Anselmann P, Hampel W, Heusser G et al (1992b) Implications of the GALLEX determination of the solar neutrino flux. Phys Lett B 285:390Google Scholar
  6. Arima A, Iachello F (1975) Collective nuclear states as representations of a SU(6) group. Phys Rev Lett 35:1069Google Scholar
  7. Armbruster P (1984) On the production of heavy elements by cold fusion: the elements 106 to 109. Ann Rev Nucl Part Sci 35:135Google Scholar
  8. Baranov VI, Kretschmer SI (1935) Verwendung von Lichtplatten mit dicker Emulsionsschicht zur Erforschung der Verteilung radioaktiver Elemente in Naturobjekten. Compt Rend Acad Sci URSS I:546Google Scholar
  9. Becquerel H (1896) Sur les radiations émises par phosphorescence. Compt Rend 122:420; Sur les radiations invisibles émises par les corps phosphorescents. Compt Rend 122:501, 559, 689, 762, 1086Google Scholar
  10. Bender M, Rutz K, Reinhard PG et al (1999) Shell structure of superheavy nuclei in self-consistent mean-field models. Phys Rev C 60:034304Google Scholar
  11. Berson SE, Yalow RS (1957) Kinetics of reaction between insulin and insulin-binding antibody. J Clin Invest 36:873Google Scholar
  12. Bertolini G, Coche A (eds) (1968) Semiconductor Detectors. North-Holland, AmsterdamGoogle Scholar
  13. Bethe HA (1939) Energy production in stars. Phys Rev 55:434Google Scholar
  14. Blumgart HL, Weiss S (1927) Studies of the velocity of blood flow II, The velocity of blood flow in normal resting individuals and a critique of the method used. J Clin Invest 4:16Google Scholar
  15. Bodu R, Bouzigues H, Morin N et al (1972) Sur l’existence d’anomalies isotopiques rencontrées dans l’uranium du Gabon. Compt Rend D 275:1731Google Scholar
  16. Bohr A, Mottelson BR (1953) Collective and individual particle aspects of nuclear structure. Danske Vidensk Selsk Mat-fys Medd 27, No. 16Google Scholar
  17. Bohr N (1913) Constitution of atoms and molecules I, II. Phil Mag 26:1, 476Google Scholar
  18. Bohr N (1936) Neutron capture and nuclear constitution. Nature 137:344Google Scholar
  19. Bohr N (1939) Resonance in uranium and thorium disintegrations and the phenomenon of nuclear fission. Phys Rev 55:418Google Scholar
  20. Bohr N, Kalckar F (1937) On the transmutation of atomic nuclei by impact of material particles I, General theoretical remarks. Danske Vidensk Selsk Mat-fys Medd 14, No. 10Google Scholar
  21. Bohr N, Wheeler JA (1939) The mechanism of nuclear fission. Phys Rev 56:426Google Scholar
  22. Boltwood B (1907) On the ultimate disintegration products of the radioactive elements. Am J Sci 23:77Google Scholar
  23. Bromley DA (1984) The development of heavy-ion nuclear physics. In: Bromley DA (ed) Treatise on heavy-ion science, vol 1. Plenum, New York, pp 3–50Google Scholar
  24. Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Mod Phys 29:547Google Scholar
  25. Calvin M, Benson AA (1949) The path of carbon in photosynthesis IV. The identity and sequence of the intermediates in sucrose synthesis. Science 109:140Google Scholar
  26. Calvin M, Heidelberger Ch, Reid JC et al (1949) Isotopic carbon: techniques in its measurement and chemical manipulation. Wiley, New YorkGoogle Scholar
  27. Cameron AT (1910) Radiochemistry. J. M. Dent, LondonGoogle Scholar
  28. Campbell NR, Wood A (1906) The radioactivity of the alkali metals. Proc Cambr Philos Soc 14:15Google Scholar
  29. Cassen B, Curtis L, Reed C et al (1951) Instrumentation for I131 use in medical studies. Nucleonics 9(2):46Google Scholar
  30. Chadwick J (1932) The existence of a neutron. Proc Roy Soc A (Lond) 136:692Google Scholar
  31. Chiewitz O, Hevesy G (1935) Radioactive indicators in the study of phosphorus metabolism in rats. Nature 136:754Google Scholar
  32. Christiansen JA, Hevesy G, Lomholt S (1924) Recherches, par une méthode radiochimique, sur la circulation du bismuth dans l’organisme. Compt Rend 178:1324Google Scholar
  33. Cleveland BT, Daily T, Davis R Jr et al (1998) Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys J 496:505Google Scholar
  34. Cockcroft JD, Walton ETS (1930) Experiments with high velocity positive ions. Proc Roy Soc A (Lond) 129:477Google Scholar
  35. Cockcroft JD, Walton ETS (1932) Further developments in the method of obtaining high-velocity positive ions. Proc Roy Soc A (Lond) 136:619Google Scholar
  36. Corson DR, MacKenzie KR, Segrè E (1940a) Possible production of radioactive isotopes of element 85. Phys Rev 57:459Google Scholar
  37. Corson DR, MacKenzie KR, Segrè E (1940b) Artificially radioactive element 85. Phys Rev 58:672Google Scholar
  38. Coryell CD, Sugarman N (eds) (1951) Radiochemical studies: the fission products, vol 1–3. McGraw-Hill, New YorkGoogle Scholar
  39. Cowan JJ, Thielemann F-K, Truran JW (1991) The r-process and nucleochronology. Phys Rep 208:267Google Scholar
  40. Cunningham BB, Werner LB (1949) The first isolation of plutonium. J Am Chem Soc 71:1521Google Scholar
  41. Curie I, Joliot F (1934) Un nouveau type de radioactivité. Compt Rend 198:254; Séparation chimique des nouveaux radioéléments émetteurs d’électrons positifs. Compt Rend 198:559Google Scholar
  42. Curie I, Savitch P (1938) Sur les radio-éléments formés dans l’uranium irradié par les neutrons II. J Phys Radium 9:355Google Scholar
  43. Curie M (1902) Sur le poids atomique du radium. Compt Rend 135:161Google Scholar
  44. Curie P, Curie MS (1898) Sur une substance nouvelle radio-active, contenue dans la pechblende. Compt Rend 127:175Google Scholar
  45. Curie P, Curie M, Bémont G (1898) Sur une nouvelle substance fortement radio-active contenue dans la pechblende. Compt Rend 127:1215Google Scholar
  46. Curtis L, Cassen B (1952) Speeding up and improving contrast of thyroid scintigrams. Nucleonics 10(9):58Google Scholar
  47. D’Agostino O (1935) Nuovi elementi radioattivi arteficiale. Gazz Chim Ital 65:1071Google Scholar
  48. Davis R Jr, Harmer DS, Hoffman KC (1968) Search for neutrinos from the sun. Phys Rev Lett 20:1205Google Scholar
  49. Debierne A (1899) Sur une nouvelle matière radio-active. Compt Rend 129:593Google Scholar
  50. Demarçay E (1898) Sur l’espectre d’une substance radio-active. Compt Rend 127:1218Google Scholar
  51. Dostrovsky I, Fraenkel Z, Friedlander G (1959) Monte Carlo calculations of nuclear evaporation processes III, Applications to low-energy reactions. Phys Rev 116:683Google Scholar
  52. Düllmann Ch, Brüchle W, Dressler R et al (2002) Chemical investigation of hassium (element 108). Nature 418:859Google Scholar
  53. Eckelman WC, Richards P (1970) Instant 99mTc DTPA. J Nucl Med 11:761Google Scholar
  54. Eddington AS (1926) The source of stellar energy. Nature 117(Suppl):25Google Scholar
  55. Eichler R, Brüchle W, Dressler R et al (2000) Chemical characterization of bohrium (element 107). Nature 407:63Google Scholar
  56. Elsasser WR (1933) Sur le principe de Pauli dans les noyaux I. J Phys Radium 4:549Google Scholar
  57. Elsasser WR (1934) Sur le principe de Pauli dans les noyaux II, III. J Phys Radium 5:389, 635Google Scholar
  58. Fajans K (1913) Die Stellung der Radioelemente im Periodischen System. Physik Z 14:136Google Scholar
  59. Faure G, Powell JL (1972) Strontium isotope geology. Springer, BerlinGoogle Scholar
  60. Fermi E (1934a) Versuch einer Theorie der β-Strahlen. Z Phys 88:161Google Scholar
  61. Fermi E (1934b) Possible production of elements of atomic number higher than 92. Nature 133:898Google Scholar
  62. Fermi E, Amaldi E, D’Agostino O et al (1934) Artificial radioactivity produced by neutron bombardment. Proc Roy Soc A (Lond) 146:483Google Scholar
  63. Fermi E, Rasetti F (1935) Ricerche sui neutroni lenti. Nuovo Cimento 12:201Google Scholar
  64. Fiset EO, Nix JR (1972) Calculations of half-lives for superheavy nuclei. Nucl Phys A 193:647Google Scholar
  65. Flerov GN, Petrzhak KA (1940) Spontaneous fission of uranium. Phys Rev 58:89Google Scholar
  66. Flerov GN, Oganessian YuTs, Lobanov YuV et al (1971) On the synthesis of element 105. Nucl Phys A 160:181Google Scholar
  67. Fowler WA (1984) Experimental and theoretical nuclear astrophysics, The quest for the origin of the elements. Rev Mod Phys 56:149Google Scholar
  68. Frenkel Y (1936) Über das Festkörpermodell schwerer Kerne. Physik Z Sowj 9:533Google Scholar
  69. Fricke B (1975) Superheavy elements. A prediction of their chemical and physical properties. Struct Bond 21:89Google Scholar
  70. Friedlander G, Kennedy JW (1949) Introduction to radiochemistry. Wiley, New YorkGoogle Scholar
  71. Friedlander G, Kennedy JW (1955) Nuclear and radiochemistry. Wiley, New YorkGoogle Scholar
  72. Frisch OR (1939) Physical evidence for the division of heavy nuclei under neutron bombardment. Nature 143:276Google Scholar
  73. Gäggeler HW, Jost DT, Kovacs U et al (1992) Gas phase chromatography experiments with bromides of tantalum and element 105. Radiochim Acta 57:93Google Scholar
  74. Gamow G (1928) Zur Quantentheorie des Atomkerns. Z Phys 51:204Google Scholar
  75. Gamow G (1929) Über die Struktur der Atomkerne. Physik Z 30:717Google Scholar
  76. Gamow G (1946) Expanding universe and the origin of elements. Phys Rev 70:572Google Scholar
  77. Geiger H, Müller W (1928) Elektronenzählrohr zur Messung schwächster Aktivitäten. Naturwiss 16:617Google Scholar
  78. Geiger H, Nuttall JM (1911) The ranges of the α-particles from various radioactive substances and a relation between range and period of transformation. Phil Mag 22:613Google Scholar
  79. Gentner W, Kley W (1955) Zur geologischen Altersbestimmung nach der Kalium-Argon-Methode. Z Naturforsch 10a:832Google Scholar
  80. Ghiorso A, Harvey BG, Choppin GR et al (1955a) New element mendelevium, atomic number 101. Phys Rev 98:1518Google Scholar
  81. Ghiorso A, Thompson SG, Higgins GH et al (1955b) New elements einsteinium and fermium, atomic numbers 99 and 100. Phys Rev 99:1048Google Scholar
  82. Ghiorso A, Nurmia M, Eskola K et al (1970) New element hahnium, atomic number 105. Phys Rev Lett 24:1498Google Scholar
  83. Giesel F (1902) Über Radium und radioaktive Stoffe. Ber Dtsch Chem Ges 35:3608Google Scholar
  84. Glückauf E, Fay JWJ (1936) Direct production of organic compounds containing artificial radioelements. J Chem Soc 1936:390Google Scholar
  85. Green JH, Maddock AG (1949) (n, γ) Recoil effects in potassium chromate and dichromate. Nature 164:788Google Scholar
  86. Guillaumont R, Adloff JP, Peneloux A (1989) Kinetic and thermodynamic aspects of tracer-scale and single-atom chemistry. Radiochim Acta 46:169Google Scholar
  87. Guillaumont R, Adloff JP, Peneloux A et al (1991) Sub-tracer scale behaviour of radionuclides, Application to actinide chemistry. Radiochim Acta 54:1Google Scholar
  88. Gurney RW, Condon EU (1928) Wave mechanics and radioactive disintegration. Nature 122:439Google Scholar
  89. Gurney RW, Condon EU (1929) Quantum mechanics and radioactive disintegration. Phys Rev 33:127Google Scholar
  90. Hahn O (1922) Über das Uran Z und seine Muttersubstanz. Z Physik Chem 103:461Google Scholar
  91. Hahn O (1936) Applied radiochemistry. Cornell University Press), IthacaGoogle Scholar
  92. Hahn O, Meitner L (1918) Die Muttersubstanz des Actiniums, ein neues radioaktives Element von langer Lebensdauer. Physik Z 19:208Google Scholar
  93. Hahn O, Meitner L, Strassmann F (1936) Neue Umwandlungs-Prozesse bei Neutronen-Bestrahlung des Urans: Elemente jenseits Uran. Ber Dtsch Chem Ges 69:905Google Scholar
  94. Hahn O, Strassmann F (1939a) Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Naturwiss 27:11Google Scholar
  95. Hahn O, Strassmann F (1939b) Nachweis der Entstehung aktiver Bariumisotope aus Uran und Thorium durch Neutronenbestrahlung, Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung. Naturwiss 27:89Google Scholar
  96. Hahn O, Strassmann F, Mattauch J et al (1943) Geologische Altersbestimmung mit der Strontiummethode. Chemiker Ztg 67:55Google Scholar
  97. Hamilton JG, Soley MH (1939) Studies in iodine metabolism by the use of a new radioactive isotope of iodine. Am J Physiol 127:557Google Scholar
  98. Hamilton JG, Soley MH (1940) Studies in iodine metabolism of the thyroid gland in situ by the use of radio-iodine in normal subjects and in patients with various types of goiter. Am J Physiol 131:135Google Scholar
  99. Haxel O, Jensen JHD, Suess HE (1950) Modellmässige Deutung der ausgezeichneten Nukleonenzahlen im Kernbau. Z Phys 128:295Google Scholar
  100. Herrmann G (1979) Superheavy-element research. Nature 280:543Google Scholar
  101. Herrmann G (2003) Historical reminiscences. In: Schädel M (ed) The chemistry of the superheavy elements. Kluwer, Dordrecht, pp 291–316Google Scholar
  102. Herrmann G, Trautmann N (1982) Rapid chemical methods for identification and study of short-lived nuclides. Ann Rev Nucl Part Sci 32:117Google Scholar
  103. Hevesy G (1915) Über den Austausch der Atome zwischen festen und flüssigen Phasen. Physik Z 16:52Google Scholar
  104. Hevesy G (1923) Absorption and translocation of lead by plants, A contribution to the application of the method of radioactive indicators to the investigation of the change of substance in plants. Biochem J 17:439Google Scholar
  105. Hevesy G, Levi H (1936) The action of neutrons on rare earth elements. Danske Vidensk Selsk Mat-fys Medd 14, No. 5Google Scholar
  106. Hevesy G, Paneth F (1913) Die Löslichkeit des Bleisulfids und Bleichromats. Z Anorg Chem 82:323Google Scholar
  107. Hofmann S, Reisdorf W, Münzenberg G et al (1982) Proton radioactivity of 151Lu. Z Phys A 305:111Google Scholar
  108. Hönigschmid O, Horovitz S (1914) Sur le poids atomique du plomb de la pechblende. Compt Rend 158:1796Google Scholar
  109. Ido T, Wan C-N, Casella V et al (1978) Labeled 2-deoxy-D-glucose analogs, 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labelled Compd Radiopharm 14:175Google Scholar
  110. IUPAC (1997) International Union of Pure and Applied Chemistry: names and symbols of transfermium elements. Pure Appl Chem 69:2471Google Scholar
  111. Jauncey GEM (1946) The early years of radioactivity. Am J Phys 14:226Google Scholar
  112. Jones AG (1995) Technetium in nuclear medicine. Radiochim Acta 70/71:289Google Scholar
  113. Kamen MD (1963) Early history of carbon-14. Science 140:584Google Scholar
  114. Katz JJ, Morss LR, Seaborg GT (1986) Summary and comparative aspects of the actinide elements. In: Katz JJ, Seaborg GT, Morss LR (eds) The chemistry of the actinide elements, 2nd edn. Chapman & Hall, London, pp 1121–1193Google Scholar
  115. Kaufmann R, Wolfgang R (1959) Complex nucleon transfer reaction of heavy ions. Phys Rev Lett 3:232Google Scholar
  116. Kaufmann R, Wolfgang R (1961) Nucleon transfer reactions in grazing collisions of heavy ions. Phys Rev 121:192Google Scholar
  117. Kennedy JW, Seaborg GT, Segrè E, Wahl AC (1946) Properties of 94 (239). Phys Rev 70:555Google Scholar
  118. Kim JL (1986) Chemical behaviour of transuranic elements in natural aquatic systems. In: Freeman AJ, Keller C (eds) Handbook on the physics and chemistry of the actinides, vol 4. North-Holland, Amsterdam, pp 413–455Google Scholar
  119. Kirsten T (1978) Time and the solar system. In: Dermott SF (ed) Origin of the solar system. Wiley, Chichester, pp 267–346Google Scholar
  120. Kluge H-J, Bollen G (1992) Ion traps: recent applications and developments. Nucl Instr Meth B 70:473Google Scholar
  121. Kratz JV, Zimmermann HP, Scherer UW et al (1989) Chemical properties of element 105 in aqueous solution, Halide complex formation and anion exchange into triisooctyl amine. Radiochim Acta 48:121Google Scholar
  122. Lawrence EO, Livingston MS (1931) The production of high-speed protons without the use of high voltages. Phys Rev 38:834Google Scholar
  123. Lebowitz E, Greene MW, Fairchild R et al (1975) Thallium-201 for medical use. J Nucl Med 16:151Google Scholar
  124. Libby WF (1946) Atmospheric helium three and radiocarbon from cosmic radiation. Phys Rev 69:671Google Scholar
  125. Libby WF (1952) Radiocarbon dating. University of Chicago Press, ChicagoGoogle Scholar
  126. Litherland AE (1980) Ultrasensitive mass spectrometry with accelerators. Ann Rev Nucl Part Sci 30:437Google Scholar
  127. Livingston MS, Blewett JP (1962) Particle accelerators. McGraw-Hill, New YorkGoogle Scholar
  128. Marckwald W (1903) Über den radioaktiven Bestandtheil des Wismuths aus Joachimsthaler Pechblende. Ber Dtsch Chem Ges 36:2662Google Scholar
  129. Marinsky JA, Glendenin LE, Coryell CD (1947) The chemical identification of radioisotopes of neodymium and of element 61. J Am Chem Soc 69:2781Google Scholar
  130. Maurette M (1976) Fossil nuclear reactors. Ann Rev Nucl Sci 26:319Google Scholar
  131. Mayer MG (1950) Nuclear configurations in the spin-orbit coupling model I, Empirical evidence. Phys Rev 78:16; II, Theoretical considerations. Phys Rev 78:22Google Scholar
  132. McMillan E (1939) Recoils from uranium activated by neutrons. Phys Rev 55:510Google Scholar
  133. McMillan E, Abelson PH (1940) Radioactive element 93. Phys Rev 57:1185Google Scholar
  134. Meitner L, Frisch OR (1939) Disintegration of uranium by neutrons. A new type of nuclear reaction. Nature 143:239Google Scholar
  135. Meitner L, Hahn O, Strassmann F (1937) Über die Umwandlungsreihen des Urans, die durch Neutronenbestrahlung erzeugt werden. Z Phys 106:249Google Scholar
  136. Meldner H (1966) Predictions of new magic regions and masses for super-heavy nuclei from calculations with realistic shell model single particle Hamiltonians. In: Forsling W, Herrlander CJ, Ryde H (eds) Nuclides far off the stability line, Almqvist & Wiksell, Stockholm, pp 593–601; also Arkiv Fysik 36:593Google Scholar
  137. Metropolis N, Bivins R, Storm M et al (1958a) Monte Carlo calculations on intranuclear cascades I, Low-energy studies. Phys Rev 110:185Google Scholar
  138. Metropolis N, Bivins R, Storm M et al (1958b) Monte Carlo calculations on intranuclear cascades II, High energy studies and pion processes. Phys Rev 110:204Google Scholar
  139. Meyer St, Hess VF, Paneth F (1914) Neue Reichweitenbestimmungen an Polonium, Ionium und Actiniumpräparaten. Sitzungsber Akad Wiss Wien, Math-naturw Kl IIa 123:1459Google Scholar
  140. Meyer St, Schweidler ER von (1916, 1927) Radioaktivität, 1st and 2nd edn. B. G. Teubner, Leipzig.Google Scholar
  141. Molinski VI (1982) A review of 99mTc generator technology. Int J Appl Radiat Isot 33:811Google Scholar
  142. Moseley HGJ (1913, 1914) The high-frequency spectra of the elements I. Phil Mag 26:1024; II Phil Mag 27:703Google Scholar
  143. Mössbauer RL (1958) Kernresonanzfluoreszenz von Gammastrahlung in 191Ir. Z Phys 151:124Google Scholar
  144. Mössbauer RL (1962) Recoilless nuclear resonance absorption. Ann Rev Nucl Sci 12:123Google Scholar
  145. Mueller AC, Sherrill BM (1993) Nuclei at the limits of particle stability. Ann Rev Nucl Part Sci 43:529Google Scholar
  146. Münzenberg G, Hofmann S, Hessberger FP et al (1981) Identification of element 107 by correlation chains. Z Phys A 300:107Google Scholar
  147. Münzenberg G, Armbruster P, Hessberger FP et al (1982) Observation of one correlated α-decay in the reaction 58Fe on 209Bi → 267109. Z Phys A 309:89Google Scholar
  148. Myers WD, Swiatecki WJ (1966) Nuclear masses and deformations. Nucl Phys 81:1Google Scholar
  149. Neuilly M, Bussac J, Frèjaques C et al (1972) Sur l’existence dans un passé reculé d’une réaction en chaine naturelle de fissions, dans le gisement d’uranium d’Oklo (Gabon). Compt Rend D 275:1847Google Scholar
  150. Nier AO (1935) Evidence for the existence of an isotope of potassium of mass 40. Phys Rev 48:283Google Scholar
  151. Nier AO (1938) Variations in the relative abundances of the isotopes of common lead from various sources. J Am Chem Soc 60:1571Google Scholar
  152. Nier AO, Booth ET, Dunning JR et al (1940) Nuclear fission of separated uranium isotopes. Phys Rev 57:546, 748Google Scholar
  153. Nilsson SG (1955) Binding states of individual nucleons in strongly deformed nuclei. Danske Vidensk Selsk Mat-fys Medd 29, No. 16Google Scholar
  154. Nilsson SG, Thompson SG, Tsang CF (1969) Stability of superheavy nuclei and their possible occurrence in nature. Phys Lett B 28:458Google Scholar
  155. Oganessian YuTs, Iljinov A, Demin AG et al (1975) Experiments on the production of fermium neutron-deficient isotopes and new possibilities of synthesizing elements with Z b 100. Nucl Phys A 239:353Google Scholar
  156. Oganessian YuTs, Utyonkov VK, Lobanov YuV et al (2000a) Synthesis of superheavy nuclei in the 48Ca + 244Pu reaction: 288114. Phys Rev C 62:041604Google Scholar
  157. Oganessian YuTs, Utyonkov VK, Lobanov YuV et al (2000b) Observation of the decay of 292116. Phys Rev C 63:011301Google Scholar
  158. Oppenheimer JR, Phillips M (1935) Note on the transmutation function for deuterons. Phys Rev 48:599Google Scholar
  159. Otten EW (1989) Nuclear radii and moments of unstable isotopes. In: Bromley DA (ed) Treatise on heavy-ion science, vol 8. Plenum, New York, pp 517–638Google Scholar
  160. Paneth FA, Reasbeck P, Mayne KI (1953) Production by cosmic rays of helium-3 in meteorites. Nature 172:200Google Scholar
  161. Patterson C (1956) Age of meteorites and the Earth. Geochim Cosmochim Acta 10:230Google Scholar
  162. Pauli W (1994) On the earlier and more recent history of the neutrino. In: Pauli W (ed) Writings on physics and philosophy (English trans: Enz CP, von Meyenn K). Springer, Berlin, pp 193–217Google Scholar
  163. Perey M (1939a) Sur un élément 87, dérivé de l’actinium. Compt Rend 208:97Google Scholar
  164. Perey M (1939b) L’élément 87: AcK, dérivé de l’actinium. J Phys Radium 10:435Google Scholar
  165. Perrier C, Segrè E (1937a) Radioactive isotopes of element 43. Nature 140:193Google Scholar
  166. Perrier C, Segrè E (1937b) Some chemical properties of element 43. J Chem Phys 5:712Google Scholar
  167. Perrin J (1919) Matière et lumière, Essai de synthèse de la méchanique chimique #49: L’évolution des astres. Ann Physique 11:89Google Scholar
  168. Petrzhak KA, Flerov GN (1940) Über die spontane Teilung von Uran. Compt Rend Acad Sci URSS 28:500Google Scholar
  169. Piggott CS (1936) Apparatus to secure core samples from the ocean bottom. Bull Geol Soc Am 47:675Google Scholar
  170. Pitzer KS (1975) Are elements 112, 114, and 118 relatively inert gases? J Chem Phys 63:1032Google Scholar
  171. Polikanov SM, Druin VA, Karnaukhov VA et al (1962) Spontaneous fission with an anomalously short period. Sov Phys JETP 15:1016; J Exptl Theor Phys USSR 42:1464Google Scholar
  172. Pontecorvo B (1935) Sulle proprietà dei neutroni lenti. Nuovo Cimento 12:211Google Scholar
  173. Price WJ (1958, 1964) Nuclear radiation detection, 1st and 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  174. PUAE (1956) Proceedings of the international conference on the peaceful uses of atomic energy, vols 1–17. United Nations, New YorkGoogle Scholar
  175. Ravn HL (1979) Experiments with intense secondary beams of radioactive ions. Phys Rep 54:201Google Scholar
  176. Reines F, Cowan CL (1953) Detection of the free neutrino. Phys Rev 92:830Google Scholar
  177. Reines F, Cowan CL, Harrison FB et al (1960) Detection of the free antineutrino. Phys Rev 117:159Google Scholar
  178. Rhodes R (1986) The making of the atomic bomb. Simon & Schuster, New YorkGoogle Scholar
  179. Richards P, Tucker WD, Srivastava SC (1982) Technetium-99m: an historical perspective. Int J Appl Radiat Isot 33:793Google Scholar
  180. Richards TW, Lembert ME (1914) The atomic weight of lead of radioactive origin. J Am Chem Soc 36:1309Google Scholar
  181. Rieder W, Broda E, Erber J (1950) Dissoziation von Permanganationen durch lokale Energiezufuhr. Monatsh Chem 81:656Google Scholar
  182. Roberts RB, Hafstad LR, Meyer RC et al (1939) The delayed neutron emission which accompanies fission of uranium and thorium. Phys Rev 55:664Google Scholar
  183. Rose HJ, Jones GA (1984) A new kind of natural radioactivity. Nature 307:245Google Scholar
  184. Rosenblum S (1930) Structure fine du spectre magnétique des rayons α. Compt Rend 190:1124Google Scholar
  185. Ruben S, Kamen MD (1940a) Radioactive carbon of long half-life. Phys Rev 57:549Google Scholar
  186. Ruben S, Kamen MD (1940b) Photosynthesis with radioactive carbon IV, Molecular weight of the intermediate products and a tentative theory of photosynthesis. J Am Chem Soc 62:3451Google Scholar
  187. Ruben S, Kamen MD (1941) Long-lived radioactive carbon: C14. Phys Rev 59:349Google Scholar
  188. Ruben S, Kamen M, Hassid WZ (1940) Photosynthesis with radioactive carbon II, Chemical properties of the intermediates. J Am Chem Soc 62:3443Google Scholar
  189. Rutherford E (1900) A radio-active substance emitted from thorium compounds. Phil Mag 49:1Google Scholar
  190. Rutherford E (1906) The mass and velocity of the α particles expelled from radium and actinium. Phil Mag 12:348Google Scholar
  191. Rutherford E (1911) The scattering of α and β particles by matter and the structure of the atom. Phil Mag 21:669Google Scholar
  192. Rutherford E (1919) Collision of α particles with light atoms IV, An anomalous effect in nitrogen. Phil Mag 37:581Google Scholar
  193. Rutherford E, Soddy F (1902) The cause and nature of radioactivity I, II. Phil Mag 4:370, 569Google Scholar
  194. Rutherford E, Soddy F (1903) Radioactive change. Phil Mag 5:576Google Scholar
  195. Schädel M, Brüchle W, Dressler R et al (1997) Chemical properties of element 106 (seaborgium). Nature 388:55Google Scholar
  196. Schaeffer OA (1968) Nuclear chemistry of the earth and meteorites. In: Yaffe L (ed) Nuclear chemistry, vol 2. Academic, New York, pp 371–393Google Scholar
  197. Schaeffer OA, Zähringer J (1966) Potassium-argon dating. Springer, BerlinGoogle Scholar
  198. Schroeder WU, Huizenga JR (1977) Damped heavy-ion collisions. Ann Rev Nucl Sci 27:465Google Scholar
  199. Seaborg GT (1940) Artificial radioactivity. Chem Revs 27:199Google Scholar
  200. Seaborg GT (1945) The chemical and radioactive properties of the heavy elements. Chem Eng News 23:2190Google Scholar
  201. Seaborg GT (1954) Coordination of properties as actinide transition series. In: Seaborg GT, Katz JJ (eds) The actinide elements. McGraw-Hill, New York, pp 733–768Google Scholar
  202. Seaborg GT, Katz JJ (eds) (1954) The actinide elements. McGraw-Hill, New YorkGoogle Scholar
  203. Seaborg GT, Wahl AC (1948) The chemical properties of elements 94 and 93. J Am Chem Soc 70:1128Google Scholar
  204. Seaborg GT, McMillan EM, Kennedy JW, Wahl AC (1946a) Radioactive element 94 from deuterons on uranium. Phys Rev 69:366Google Scholar
  205. Seaborg GT, Wahl AC, Kennedy JW (1946b) Radioactive element 94 from deuterons on uranium. Phys Rev 69:367Google Scholar
  206. Seaborg GT, James RA, Morgan LO (1949a) The new element americium (atomic number 95). In: Seaborg GT, Katz JJ, Manning WM (eds) The transuranium elements, research papers II. McGraw-Hill, New York, pp 1525–1553Google Scholar
  207. Seaborg GT, James RA, Ghiorso A (1949b) The new element curium (atomic number 96). In: Seaborg GT, Katz JJ, Manning WM (eds) The transuranium elements, research papers II. McGraw-Hill, New York, pp 1554–1571Google Scholar
  208. Seelmann-Eggebert W, Strassmann F (1947) Über die bei der Uranspaltung noch zu erwartenden Bruchstücke. Z Naturforsch 2a:80Google Scholar
  209. Segrè E, Halford RS, Seaborg GT (1939) Chemical separation of nuclear isomers. Phys Rev 55:321Google Scholar
  210. Serber R (1947) Nuclear reactions at high energies. Phys Rev 72:1114Google Scholar
  211. Siegel JM (1946) Nuclei formed in fission: decay characteristics, fission yields, and chain relationships. J Am Chem Soc 68:2411Google Scholar
  212. Silva RJ (1986) Transeinsteinium elements. In: Katz JJ, Seaborg GT, Morss LR (eds) The chemistry of the actinide elements, 2nd edn. Chapman & Hall, London, pp 1085–1115Google Scholar
  213. Sklodowska Curie M (1898) Rayons émis par les composés de l’uranium et du thorium. Compt Rend 126:1101Google Scholar
  214. Sobiczewski A, Gareev FA, Kalinkin BN (1966) Closed shells for Z b 82 and N b 128 in a diffuse potential well. Phys Lett B 22:500Google Scholar
  215. Soddy F (1911) Radioactivity. Ann Rep Progr Chem 7:285Google Scholar
  216. Soddy F (1913a) Intra-atomic charge. Nature 92:400Google Scholar
  217. Soddy F (1913b) The radio-elements and the periodic law. Chem News 107:97Google Scholar
  218. Soddy F (1975) In: Trenn TT (ed) Radioactivity and atomic theory: facsimile reproduction of the annual progress reports on radioactivity 1904–1920 to the chemical society by Frederick Soddy F.R.S. Taylor & Francis, LondonGoogle Scholar
  219. Stöcklin G, Pike VW (eds) (1993) Radiopharmaceuticals for positron emission tomography: methodological aspects. Kluwer, DordrechtGoogle Scholar
  220. Strassmann F, Hahn O (1942) Über die Isolierung und einige Eigenschaften des Elements 93. Naturwiss 30:256Google Scholar
  221. Strutinsky VM (1967) Shell effects in nuclear masses and deformation energies. Nucl Phys A 95:420Google Scholar
  222. Suess HE, Urey HC (1956) Abundances of the elements. Rev Mod Phys 28:53Google Scholar
  223. Szilard L, Chalmers TA (1934) Chemical separation of the radioactive element from its bombarded isotope in the Fermi effect. Nature 134:462Google Scholar
  224. Tanihata I, Hamagaki H, Hashimoto O et al (1985) Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys Rev Lett 55:2676Google Scholar
  225. Thompson SG, Ghiorso A, Seaborg GT (1950a) Element 97. Phys Rev 77:838Google Scholar
  226. Thompson SG, Street K Jr, Ghiorso A, Seaborg GT (1950b) Element 98. Phys Rev 78:298Google Scholar
  227. Thomson JJ (1913) Positive rays of electricity. Nature 91:362Google Scholar
  228. Urey HC, Brickwedde FG, Murphy GM (1932) Hydrogen isotope of mass 2 and its concentration. Phys Rev 40:1Google Scholar
  229. Van de Graaff RJ, Compton KT, Van Atta LC (1933) Electrostatic production of high voltage. Phys Rev 43:149Google Scholar
  230. von Gunten HR (1969) Distribution of mass in spontaneous and neutron-induced fission. Actinide Revs 1(4):275Google Scholar
  231. Wahl AC, Bonner NA (1951) Radioactivity applied to chemistry. Wiley, New YorkGoogle Scholar
  232. Watters RL, Hakonson TE, Lane LJ (1983) The behavior of actinides in the environments. Radiochim Acta 32:89Google Scholar
  233. Weizsäcker CF von (1935) Zur Theorie der Kernmassen. Z Phys 96:431Google Scholar
  234. Weizsäcker CF von (1937) Über die Möglichkeit eines dualen β-Zerfalls von Kalium. Physik Z 38:623Google Scholar
  235. Wetherill GW (1971) Of time and the Moon. Science 173:383Google Scholar
  236. Wetherill GW (1975) Radiometric chronology of the early solar system. Ann Rev Nucl Sci 25:283Google Scholar
  237. Wilczynski J, Volkov VV, Decowski P (1967) Some features of the mechanism of many-neutron-transfer reactions. Sov J Nucl Phys 5:672; Yad Fiz 5:942Google Scholar
  238. Wilkins BD, Steinberg EP, Chasman RR (1976) Scission-point model of nuclear fission based on deformed-shell effects. Phys Rev C 14:1832Google Scholar
  239. Wilkinson DH, Wapstra AH, Ulehla I et al (1993) Discovery of the transfermium elements, Report of the Transfermium Working Group of IUPAC and IUPAP II, Introduction to discovery profiles, III, Discovery profiles of the transfermium elements. Pure Appl Chem 65:1757, 1764Google Scholar
  240. Willard JE (1953) Chemical effects of nuclear transformations. Ann Rev Nucl Sci 3:193Google Scholar
  241. Wolf AP (1960) Labeling of organic compounds by recoil methods. Ann Rev Nucl Sci 10:259Google Scholar
  242. Wolf AP (1964) The reactions of energetic tritium and carbon atoms with organic compounds. Adv Phys Organ Chem 2:201Google Scholar
  243. Wolf AP, Redvanly CS (1977) Carbon-11 and radiopharmaceuticals. Int J Appl Radiat Isot 28:29Google Scholar
  244. Yalow RS (1978) Radioimmunoassay: A probe for the fine structure of biologic systems. Science 200:1236Google Scholar
  245. Yankwich PE, Rollefson GK, Norris TH (1946) Chemical forms assumed by C14 produced by neutron irradiation of nitrogenous substances. J Chem Phys 14:13Google Scholar
  246. Zvara I, Belov VZ, Domanov VP et al (1971) Chemical isolation of kurchatovium. Sov Radiochem 14:115; Radiokhimia 14:119Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Brookhaven National LaboratoryUptonUSA
  2. 2.Institut für KernchemieJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations