Viral-Like Proteins

  • Lavakumar Karyampudi
  • Keith L. Knutson
Reference work entry


Cancer immunotherapy is a rapidly evolving field and the search for appropriate targets to come up with robust immunotherapeutic strategies for the treatment of cancers is a continuous process. Viral-like proteins are known to have an important role in the oncogenesis and their potential as cancer therapeutic targets is yet to be completely explored. In this report we summarized different aspects of viral-like proteins such as their biology, their role in cancer and gave an insight into strategies that can be adopted to target these proteins for the treatment of cancer.


Oncogenesis Cancer Immunotherapy 


  1. Amado RG, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34.CrossRefPubMedGoogle Scholar
  2. Armbruester V, et al. A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin Cancer Res. 2002;8(6):1800–7.PubMedGoogle Scholar
  3. Bannert N, Kurth R. Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A. 2004;101 Suppl 2:14572–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 2006;7:149–73.CrossRefPubMedGoogle Scholar
  5. Bera TK, et al. Defective retrovirus insertion activates c-Ha-ras protooncogene in an MNU-induced rat mammary carcinoma. Biochem Biophys Res Commun. 1998;248(3):835–40.CrossRefPubMedGoogle Scholar
  6. Bergo MO, et al. Absence of the CAAX endoprotease Rce1: effects on cell growth and transformation. Mol Cell Biol. 2002;22(1):171–81.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bergo MO, et al. Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. J Clin Invest. 2004;113(4):539–50.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bister K, Jansen HW. Oncogenes in retroviruses and cells: biochemistry and molecular genetics. Adv Cancer Res. 1986;47:99–188.CrossRefPubMedGoogle Scholar
  9. Bjerregaard B, et al. Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci. 2006;63(16):1906–11.CrossRefPubMedGoogle Scholar
  10. Boggon TJ, Eck MJ. Structure and regulation of Src family kinases. Oncogene. 2004;23(48):7918–27.CrossRefPubMedGoogle Scholar
  11. Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci. 2001;26(11):657–64.CrossRefPubMedGoogle Scholar
  12. Britten RJ, Davidson EH. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol. 1971;46(2):111–38.CrossRefPubMedGoogle Scholar
  13. Buscher K, et al. Expression of human endogenous retrovirus K in melanomas and melanoma cell lines. Cancer Res. 2005;65(10):4172–80.CrossRefPubMedGoogle Scholar
  14. Cacev T, et al. NF1 gene loss of heterozygosity and expression analysis in sporadic colon cancer. Gut. 2005;54(8):1129–35.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carlini F, et al. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines. PLoS One. 2010;5(12):e14221.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen T, et al. The viral oncogene Np9 acts as a critical molecular switch for co-activating beta-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia. 2013;27(7):1469–78.CrossRefPubMedGoogle Scholar
  17. Contreras-Galindo R, et al. Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol. 2008;82(19):9329–36.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Davies H, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefPubMedGoogle Scholar
  19. Deininger PL, Batzer MA. Mammalian retroelements. Genome Res. 2002;12(10):1455–65.CrossRefPubMedGoogle Scholar
  20. Denayer E, de Ravel T, Legius E. Clinical and molecular aspects of RAS related disorders. J Med Genet. 2008;45(11):695–703.CrossRefPubMedGoogle Scholar
  21. Denne M, et al. Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein. J Virol. 2007;81(11):5607–16.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Depil S, et al. Expression of a human endogenous retrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia. 2002;16(2):254–9.CrossRefPubMedGoogle Scholar
  23. Der CJ, Krontiris TG, Cooper GM. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci U S A. 1982;79(11):3637–40.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dhomen N, Marais R. New insight into BRAF mutations in cancer. Curr Opin Genet Dev. 2007;17(1):31–9.CrossRefPubMedGoogle Scholar
  25. Downward J. Lipid-regulated kinases: some common themes at last. Science. 1998;279(5351):673–4.CrossRefPubMedGoogle Scholar
  26. Fensterer H, et al. Expression profiling of the influence of RAS mutants on the TGFB1-induced phenotype of the pancreatic cancer cell line PANC-1. Genes Chromosomes Cancer. 2004;39(3):224–35.CrossRefPubMedGoogle Scholar
  27. Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta. 2002;1602(2):114–30.PubMedGoogle Scholar
  28. Franke TF, et al. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22(56):8983–98.CrossRefPubMedGoogle Scholar
  29. Frendo JL, et al. Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol. 2003;23(10):3566–74.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gasent Blesa J, Candel V. Cell-cell fusion as a potential target in cancer therapy. Ecancermedicalscience. 2009;3:145.PubMedPubMedCentralGoogle Scholar
  31. Giehl K. Oncogenic Ras in tumour progression and metastasis. Biol Chem. 2005;386(3):193–205.PubMedGoogle Scholar
  32. Golde A. Radio-induced mutants of the Schmidt-Ruppin strain of rous sarcoma virus. Virology. 1970;40(4):1022–9.CrossRefPubMedGoogle Scholar
  33. Herrera R, Sebolt-Leopold JS. Unraveling the complexities of the Raf/MAP kinase pathway for pharmacological intervention. Trends Mol Med. 2002;8(4 Suppl):S27–31.CrossRefPubMedGoogle Scholar
  34. Howe LR, et al. Activation of the MAP kinase pathway by the protein kinase raf. Cell. 1992;71(2):335–42.CrossRefPubMedGoogle Scholar
  35. Huebner RJ, Todaro GJ. Oncogenes of RNA tumor viruses as determinants of cancer. Proc Natl Acad Sci U S A. 1969;64(3):1087–94.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene. 2000;19(49):5636–42.CrossRefPubMedGoogle Scholar
  37. Kaufmann S, et al. Human endogenous retrovirus protein Rec interacts with the testicular zinc-finger protein and androgen receptor. J Gen Virol. 2010;91(Pt 6):1494–502.CrossRefPubMedGoogle Scholar
  38. Kettmann R, et al. Leukemogenesis by bovine leukemia virus: proviral DNA integration and lack of RNA expression of viral long terminal repeat and 3′ proximate cellular sequences. Proc Natl Acad Sci U S A. 1982;79(8):2465–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Khosravi-Far R, et al. Increasing complexity of Ras signal transduction: involvement of Rho family proteins. Adv Cancer Res. 1998;72:57–107.CrossRefPubMedGoogle Scholar
  40. Khoukaz T. Administration of anti-EGFR therapy: a practical review. Semin Oncol Nurs. 2006;22(1 Suppl 1):20–7.CrossRefPubMedGoogle Scholar
  41. Kidwell MG, Lisch D. Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A. 1997;94(15):7704–11.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kudo Y, Boyd CA. Changes in expression and function of syncytin and its receptor, amino acid transport system B(0) (ASCT2), in human placental choriocarcinoma BeWo cells during syncytialization. Placenta. 2002;23(7):536–41.CrossRefPubMedGoogle Scholar
  43. Landriscina M, et al. Nevirapine restores androgen signaling in hormone-refractory human prostate carcinoma cells both in vitro and in vivo. Prostate. 2009;69(7):744–54.CrossRefPubMedGoogle Scholar
  44. Landry JR, Mager DL. Functional analysis of the endogenous retroviral promoter of the human endothelin B receptor gene. J Virol. 2003;77(13):7459–66.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Landry JR, et al. The Opitz syndrome gene Mid1 is transcribed from a human endogenous retroviral promoter. Mol Biol Evol. 2002;19(11):1934–42.CrossRefPubMedGoogle Scholar
  46. Larsson LI, Holck S, Christensen IJ. Prognostic role of syncytin expression in breast cancer. Hum Pathol. 2007;38(5):726–31.CrossRefPubMedGoogle Scholar
  47. Maeda N, Fan H, Yoshikai Y. Oncogenesis by retroviruses: old and new paradigms. Rev Med Virol. 2008;18(6):387–405.CrossRefPubMedGoogle Scholar
  48. Mangiacasale R, et al. Exposure of normal and transformed cells to nevirapine, a reverse transcriptase inhibitor, reduces cell growth and promotes differentiation. Oncogene. 2003;22(18):2750–61.CrossRefPubMedGoogle Scholar
  49. Marchuk DA, et al. cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics. 1991;11(4):931–40.CrossRefPubMedGoogle Scholar
  50. Martin GS. Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature. 1970;227(5262):1021–3.CrossRefPubMedGoogle Scholar
  51. Mayer J, et al. Human endogenous retrovirus HERV-K(HML-2) proviruses with Rec protein coding capacity and transcriptional activity. Virology. 2004;322(1):190–8.CrossRefPubMedGoogle Scholar
  52. McDonald JF. Evolution and consequences of transposable elements. Curr Opin Genet Dev. 1993;3(6):855–64.CrossRefPubMedGoogle Scholar
  53. Medstrand P, van de Lagemaat LN, Mager DL. Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Res. 2002;12(10):1483–95.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mikkelsen TS, et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature. 2007;447(7141):167–77.CrossRefPubMedGoogle Scholar
  55. Mortensen K, et al. Spontaneous fusion between cancer cells and endothelial cells. Cell Mol Life Sci. 2004;61(16):2125–31.CrossRefPubMedGoogle Scholar
  56. Mullins CS, Linnebacher M. Endogenous retrovirus sequences as a novel class of tumor-specific antigens: an example of HERV-H env encoding strong CTL epitopes. Cancer Immunol Immunother. 2012;61(7):1093–100.CrossRefPubMedGoogle Scholar
  57. Norberg S, Powell TL, Jansson T. Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters. Pediatr Res. 1998;44(2):233–8.CrossRefPubMedGoogle Scholar
  58. Parada LF, et al. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature. 1982;297(5866):474–8.CrossRefPubMedGoogle Scholar
  59. Rajalingam K, et al. Ras oncogenes and their downstream targets. Biochim Biophys Acta. 2007;1773(8):1177–95.CrossRefPubMedGoogle Scholar
  60. Ross PJ, et al. Inhibition of Kirsten-ras expression in human colorectal cancer using rationally selected Kirsten-ras antisense oligonucleotides. Mol Cancer Ther. 2001;1(1):29–41.PubMedGoogle Scholar
  61. Santos E, et al. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature. 1982;298(5872):343–7.CrossRefPubMedGoogle Scholar
  62. Sciamanna I, et al. Inhibition of endogenous reverse transcriptase antagonizes human tumor growth. Oncogene. 2005;24(24):3923–31.CrossRefPubMedGoogle Scholar
  63. Shalloway D, Zelenetz AD, Cooper GM. Molecular cloning and characterization of the chicken gene homologous to the transforming gene of Rous sarcoma virus. Cell. 1981;24(2):531–41.CrossRefPubMedGoogle Scholar
  64. Sorek R, Ast G, Graur D. Alu-containing exons are alternatively spliced. Genome Res. 2002;12(7):1060–7.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Stehelin D, et al. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature. 1976;260(5547):170–3.CrossRefPubMedGoogle Scholar
  66. Stites EC, Ravichandran KS. A systems perspective of ras signaling in cancer. Clin Cancer Res. 2009;15(5):1510–3.CrossRefPubMedGoogle Scholar
  67. Stoye JP, Coffin JM. A provirus put to work. Nature. 2000;403(6771):715. 717.CrossRefPubMedGoogle Scholar
  68. Strick R, et al. Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med (Berl). 2007;85(1):23–38.CrossRefGoogle Scholar
  69. Suliman BA, Xu D, Williams BR. The promyelocytic leukemia zinc finger protein: two decades of molecular oncology. Front Oncol. 2012;2:74.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Takeya T, Hanafusa H. Structure and sequence of the cellular gene homologous to the RSV src gene and the mechanism for generating the transforming virus. Cell. 1983;32(3):881–90.CrossRefPubMedGoogle Scholar
  71. Tartaglia M, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29(4):465–8.CrossRefPubMedGoogle Scholar
  72. Tidyman WE, Rauen KA. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev. 2009;19(3):230–6.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Toyoshima K, Friis RR, Vogt PK. The reproductive and cell-transforming capacities of avian sarcoma virus B77: inactivation with UV light. Virology. 1970;42(1):163–70.CrossRefPubMedGoogle Scholar
  74. van de Lagemaat LN, et al. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 2003;19(10):530–6.CrossRefPubMedGoogle Scholar
  75. Wang T, et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci U S A. 2007;104(47):18613–8.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wang-Johanning F, et al. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J Natl Cancer Inst. 2012;104(3):189–210.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.NewLink GeneticsAmesUSA
  2. 2.Department of ImmunologyMayo Clinic JacksonvilleJacksonvilleUSA

Personalised recommendations