Precancerous Lesions of the Cervix

  • Thomas C. Wright
  • Brigitte M. Ronnett
  • Robert J. Kurman
  • Alex Ferenczy


The histopathological classification of a disease should reflect both current concepts of its pathogenesis as well as its clinical behavior. Over the last 50 years, our understanding of the pathobiology and behavior of cervical cancer precursors has evolved considerably. As a result, the terminology used to classify preinvasive lesions of the cervix has frequently changed. Although these changes in nomenclature and the resulting lack of a uniform terminology have been an ongoing source of confusion to both gynecologists and pathologists, each change has actually reduced the number of specific pathological categories and has made clinical decision making more straightforward.


Cervical Cancer Cervical Intraepithelial Neoplasia Invasive Cervical Cancer Invasive Squamous Cell Carcinoma Glandular Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdul-Karim FW, Fu YS, Reagan JW et al (1982) Morphometric study of intraepithelial neoplasia of the uterine cervix. Obstet Gynecol 60:210–214PubMedGoogle Scholar
  2. 2.
    Alvarez RD, Wright TC (2007) Effective cervical neoplasia detection with a novel optical detection system: a randomized trial. Gynecol Oncol 104(2):281–289PubMedCrossRefGoogle Scholar
  3. 3.
    Anciaux D, Lawrence WD, Gregoire L (1997) Glandular lesions of the uterine cervix: prognostic implications of human papillomavirus status. Int J Gynecol Pathol 16:103–110PubMedCrossRefGoogle Scholar
  4. 4.
    Andersen ES, Arffmann E (1989) Adenocarcinoma in situ of the uterine cervix: a clinico-pathologic study of 36 cases. Gynecol Oncol 35:1–7PubMedCrossRefGoogle Scholar
  5. 5.
    Anonymous (2001) SEER Program – National Cancer Institute, USA. Retrieved 20 Mar, 2003, 2009Google Scholar
  6. 6.
    Appleby P, Beral V, Berrington de Gonzalez A et al (2007) Cervical cancer and hormonal contraceptives: collaborative reanalysis of individual data for 16,573 women with cervical cancer and 35,509 women without cervical cancer from 24 epidemiological studies. Lancet 370(9599):1609–1621PubMedCrossRefGoogle Scholar
  7. 7.
    Arbyn M, Sasieni P, Meijer CJ et al (2006) Chapter 9: Clinical applications of HPV testing: a summary of meta-analyses. Vaccine 24(Suppl 3):S78–S89CrossRefGoogle Scholar
  8. 8.
    ASCUS-LSIL Traige Study (ALTS) Group (2003) A randomized trial on the management of low-grade squamous intraepithelial lesion cytology interpretations. Am J Obstet Gynecol 188(6):1393–1400Google Scholar
  9. 9.
    ASCUS-LSIL Traige Study (ALTS) Group (2003) Results of a randomized trial on the management of cytology interpretations of atypical squamous cells of undetermined significance. Am J Obstet Gynecol 188(6):1383–1392Google Scholar
  10. 10.
    Baker AC, Eltoum I, Curry RO et al (2006) Mucinous expression in benign and neoplastic glandular lesions of the uterine cervix. Arch Pathol Lab Med 130(10):1510–1515PubMedGoogle Scholar
  11. 11.
    Bandyopadhyay S, Austin RM, Dabbs D et al (2008) Adjunctive human papillomavirus DNA testing is a useful option in some clinical settings for disease risk assessment and triage of females with ASC-H Papanicolaou test results. Arch Pathol Lab Med 132(12):1874–1881PubMedGoogle Scholar
  12. 12.
    Benard VB, Lee NC, Piper M et al (2001) Race-specific results of Papanicolaou testing and the rate of cervical neoplasia in the National Breast and Cervical Cancer Early Detection Program, 1991–1998 (United States). Cancer Causes Control 12(1):61–68PubMedCrossRefGoogle Scholar
  13. 13.
    Bergeron C, Ferenczy A, Shah K et al (1987) Multicentric human papillomavirus infections of the female genital tract. Correlation of viral types with abnormal mitotic figures, colposcopic presentation, and location. Obstet Gynecol 69:736–742PubMedGoogle Scholar
  14. 14.
    Bernard H-U, Chan S-Y, Delius H (1994) Evolution of papillomaviruses. Curr Top Microbiol Immunol 186:33–54PubMedCrossRefGoogle Scholar
  15. 15.
    Bertrand M, Lickrish GM, Colgan TJ (1987) The anatomic distribution of cervical adenocarcinoma in situ: implications for treatment. Am J Obstet Gynecol 157:21–25PubMedGoogle Scholar
  16. 16.
    Boardman LA, Stanko C, Weitzen S et al (2005) Atypical squamous cells of undetermined significance: human papillomavirus testing in adolescents. Obstet Gynecol 105(4):741–746PubMedCrossRefGoogle Scholar
  17. 17.
    Bocking A, Nguyen VQ (2004) Diagnostic and prognostic use of DNA image cytometry in cervical squamous intraepithelial lesions and invasive carcinoma. Cancer 102(1):41–54PubMedCrossRefGoogle Scholar
  18. 18.
    Boddington MM, Spriggs AI, Cowdell RH (1976) Adenocarcinoma of the uterine cervix: cytological evidence of a long preclinical evolution. Br J Obstet Gynecol 83:900–903CrossRefGoogle Scholar
  19. 19.
    Bollmann R, Mehes G, Speich N et al (2005) Aberrant, highly hyperdiploid cells in human papillomavirus-positive, abnormal cytologic samples are associated with progressive lesions of the uterine cervix. Cancer 105(2):96–100PubMedCrossRefGoogle Scholar
  20. 20.
    Bollmann R, Mehes G, Torka R et al (2003) Human papillomavirus typing and DNA ploidy determination of squamous intraepithelial lesions in liquid-based cytologic samples. Cancer 99(1):57–62PubMedCrossRefGoogle Scholar
  21. 21.
    Boon ME, Baak JPA, Kurver PJH et al (1981) Adenocarcinoma in situ of the cervix: an underdiagnosed lesion. Cancer 48:768–773PubMedCrossRefGoogle Scholar
  22. 22.
    Bosch FX, de Sanjose S (2007) The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers 23(4):213–227PubMedGoogle Scholar
  23. 23.
    Bousfield L, Pacey F, Young Q et al (1980) Expanded cytologic criteria for the diagnosis of adenocarcinoma in situ of the cervix and related lesions. Acta Cytol 24(4):283–296PubMedGoogle Scholar
  24. 24.
    Broders AC (1932) Carcinoma in situ contrasted with benign penetrating epithelium. JAMA 99:1670–1674CrossRefGoogle Scholar
  25. 25.
    Brown DR, Shew ML, Qadadri B et al (2005) A longitudinal study of genital human papillomavirus infection in a cohort of closely followed adolescent women. J Infect Dis 191(2):182–192PubMedCrossRefGoogle Scholar
  26. 26.
    Brown LJR, Wells M (1986) Cervical glandular atypia associated with squamous intraepithelial neoplasia: a premalignant lesion? J Clin Pathol 39:22–28PubMedCrossRefGoogle Scholar
  27. 27.
    Burchell AN, Winer RL, de Sanjose S et al (2006) Chapter 6: Epidemiology and transmission dynamics of genital HPV infection. Vaccine 24(Suppl 3):S52–S61CrossRefGoogle Scholar
  28. 28.
    Burghardt E (1991) Colposcopy-cervical pathology. Thieme Medical, New YorkGoogle Scholar
  29. 29.
    Butterworth CEJ, Hatch KD, Macaluso M et al (1992) Folate deficiency and cervical dysplasia. JAMA 267:528–533PubMedCrossRefGoogle Scholar
  30. 30.
    Cameron RI, Maxwell P, Jenkins D et al (2002) Immunohistochemical staining with MIB1, bcl2 and p16 assists in the distinction of cervical glandular intraepithelial neoplasia from tubo-endometrial metaplasia, endometriosis and microglandular hyperplasia. Histopathology 41(4):313–321PubMedCrossRefGoogle Scholar
  31. 31.
    Castle PE, Giuliano AR (2003) Chapter 4: Genital tract infections, cervical inflammation, and antioxidant nutrients – assessing their roles as human papillomavirus cofactors. J Natl Cancer Inst Monogr (31):29–34Google Scholar
  32. 32.
    Castle PE, Schiffman M, Wheeler CM et al (2009) Evidence for frequent regression of cervical intraepithelial neoplasia-grade 2. Obstet Gynecol 113(1):18–25PubMedGoogle Scholar
  33. 33.
    Castle PE, Stoler MH, Solomon D et al (2007) The relationship of community biopsy-diagnosed cervical intraepithelial neoplasia grade 2 to the quality control pathology-reviewed diagnoses: an ALTS report. Am J Clin Pathol 127(5):805–815PubMedCrossRefGoogle Scholar
  34. 34.
    Castle PE, Wacholder S, Sherman ME et al (2002) Absolute risk of a subsequent abnormal pap among oncogenic human papillomavirus DNA-positive, cytologically negative women. Cancer 95(10):2145–2151PubMedCrossRefGoogle Scholar
  35. 35.
    Chung TK, Cheung TH, Lo WK et al (2000) Loss of heterozygosity at the short arm of chromosome 3 in microdissected cervical intraepithelial neoplasia. Cancer Lett 154(2):189–194PubMedCrossRefGoogle Scholar
  36. 36.
    Clifford G, Franceschi S, Diaz M et al (2006) Chapter 3: HPV type-distribution in women with and without cervical neoplastic diseases. Vaccine 24(Suppl 3):S26–S34CrossRefGoogle Scholar
  37. 37.
    Clifford GM, Rana RK, Franceschi S et al (2005) Human papillomavirus genotype distribution in low-grade cervical lesions: comparison by geographic region and with cervical cancer. Cancer Epidemiol Biomarkers Prev 14(5):1157–1164PubMedCrossRefGoogle Scholar
  38. 38.
    Colgan TJ, Lickrish GM (1990) The topography and invasive potential of cervical adenocarcinoma in situ, with and without associated squamous dysplasia. Gynecol Oncol 36:246–249PubMedCrossRefGoogle Scholar
  39. 39.
    Confortini M, Bondi A, Cariaggi MP et al (2007) Interlaboratory reproducibility of liquid-based equivocal cervical cytology within a randomized controlled trial framework. Diagn Cytopathol 35(9):541–544PubMedCrossRefGoogle Scholar
  40. 40.
    Confortini M, Carozzi F, Dalla Palma P et al (2003) Interlaboratory reproducibility of atypical squamous cells of undetermined significance report: a national survey. Cytopathology 14(5):263–268PubMedCrossRefGoogle Scholar
  41. 41.
    Crocker J, Fox H, Langley FA (1968) Consistency in the histological diagnosis of epithelial abnormalities of the cervix uteri. J Clin Pathol 21:67–70CrossRefGoogle Scholar
  42. 42.
    Crum CP, Egawa K, Fu YS et al (1983) Atypical immature metaplasia (AIM): a subset of human papillomavirus infection of the cervix. Cancer 51:2214–2219PubMedCrossRefGoogle Scholar
  43. 43.
    Crum CP, Egawa K, Levine RU et al (1983) Human papillomavirus infection (condyloma) of the cervix and cervical intraepithelial neoplasia: a histological and statistical analysis. Gynecol Oncol 15:88PubMedCrossRefGoogle Scholar
  44. 44.
    Cullen TS (1900) Cancer of the uterus. Appleton, New YorkGoogle Scholar
  45. 45.
    Cullimore JE, Luesley DM, Rollason TP et al (1992) A prospective study of conization of the cervix in the management of cervical intraepithelial glandular neoplasia (CIGN) – a preliminary report. Br J Obstet Gynecol 99:314–318CrossRefGoogle Scholar
  46. 46.
    Datta SD, Koutsky LA, Ratelle S et al (2008) Human papillomavirus infection and cervical cytology in women screened for cervical cancer in the United States, 2003–2005. Ann Intern Med 148(7):493–500PubMedGoogle Scholar
  47. 47.
    Davey DD, Neal MH, Wilbur DC et al (2004) Bethesda 2001 implementation and reporting rates: 2003 practices of participants in the College of American Pathologists Interlaboratory Comparison Program in Cervicovaginal Cytology. Arch Pathol Lab Med 128(11):1224–1229PubMedGoogle Scholar
  48. 48.
    de Araujo Souza PS, Maciag PC, Ribeiro KB et al (2008) Interaction between polymorphisms of the human leukocyte antigen and HPV-16 variants on the risk of invasive cervical cancer. BMC Cancer 8:246PubMedCrossRefGoogle Scholar
  49. 49.
    de Sanjose S, Diaz M, Castellsague X et al (2007) Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect Dis 7(7):453–459PubMedCrossRefGoogle Scholar
  50. 50.
    de Villiers EM, Fauquet C, Broker TR et al (2004) Classification of papillomaviruses. Virology 324(1):17–27PubMedCrossRefGoogle Scholar
  51. 51.
    Denehy TR, Gregori CA, Breen JL (1997) Endocervical curettage, cone margins, and residual adenocarcinoma in situ of the cervix. Obstet Gynecol 90(1):1–6PubMedCrossRefGoogle Scholar
  52. 52.
    Doorbar J (2006) Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond) 110(5):525–541CrossRefGoogle Scholar
  53. 53.
    Driggers RW, Zahn CM (2008) To ECC or not to ECC: the question remains. Obstet Gynecol Clin North Am 35(4):583–597; viiiGoogle Scholar
  54. 54.
    Duby JM, DiFurio MJ (2009) Implementation of the ThinPrep Imaging System in a tertiary military medical center. Cancer Cytopathol 117(4):264–270CrossRefGoogle Scholar
  55. 55.
    Duggan MA, Benoit JL, McGregor SE et al (1994) Adenocarcinoma in situ of the endocervix: Human papillomavirus determination by dot blot hybridization and polymerase chain reaction amplification. Int J Gynecol Pathol 13(2):143–149PubMedCrossRefGoogle Scholar
  56. 56.
    Dunn TS, Burke M, Shwayder J (2003) A “see and treat” management for high-grade squamous intraepithelial lesion pap smears. J Low Genit Tract Dis 7(2):104–106PubMedCrossRefGoogle Scholar
  57. 57.
    Duska LR (2009) Can we improve the detection of glandular cervical lesions: the role and limitations of the Pap smear diagnosis atypical glandular cells (AGC). Gynecol Oncol 114(3):381–382PubMedCrossRefGoogle Scholar
  58. 58.
    Evans MF, Adamson CS, Papillo JL et al (2006) Distribution of human papillomavirus types in ThinPrep Papanicolaou tests classified according to the Bethesda 2001 terminology and correlations with patient age and biopsy outcomes. Cancer 106(5):1054–1064PubMedCrossRefGoogle Scholar
  59. 59.
    Fordyce EJ, Wang Z, Kahn AR et al (2000) Risk of cancer among women with AIDS in New York City. AIDS Public Policy J 15(3–4):95–104PubMedGoogle Scholar
  60. 60.
    Franquemont DW, Ward BE, Anderson WA et al (1989) Prediction of “high-risk” cervical papillomavirus infection by biopsy morphology. Am J Clin Pathol 92(5):577–582PubMedGoogle Scholar
  61. 61.
    Friedell GH, McKay DG (1953) Adenocarcinoma in situ of endocervix. Cancer 6:887–897PubMedCrossRefGoogle Scholar
  62. 62.
    Fu YS, Braun L, Shah KV et al (1983) Histologic, nuclear DNA, and human papillomavirus studies of cervical condylomas. Cancer 52:1705–1711PubMedCrossRefGoogle Scholar
  63. 63.
    Fu YS, Huang I, Beaudenon S et al (1988) Correlative study of human papillomavirus DNA, histopathology and morphometry in cervical condyloma and intraepithelial neoplasia. Int J Gynecol Pathol 7:297–307PubMedCrossRefGoogle Scholar
  64. 64.
    Fu YS, Reagan JW (2002) Pathology of the uterine cervix, vagina, and vulva. WB Saunders, PhiladelphiaGoogle Scholar
  65. 65.
    Fu YS, Reagan JW, Richart RM (1983) Precursors of cervical cancer. Cancer Surv 2:359–382Google Scholar
  66. 66.
    Gage JC, Hanson VW, Abbey K et al (2006) Number of cervical biopsies and sensitivity of colposcopy. Obstet Gynecol 108(2):264–272PubMedCrossRefGoogle Scholar
  67. 67.
    Garcia-Closas R, Castellsague X, Bosch X et al (2005) The role of diet and nutrition in cervical carcinogenesis: a review of recent evidence. Int J Cancer 117(4):629–637PubMedCrossRefGoogle Scholar
  68. 68.
    Gatscha RM, Abadi M, Babore S et al (2001) Smears diagnosed as ASCUS: interobserver variation and follow-up. Diagn Cytopathol 25(2):138–140PubMedCrossRefGoogle Scholar
  69. 69.
    Genest DR, Stein L, Cibas E et al (1993) A binary (Bethesda) system for classifying cervical cancer precursors: criteria, reproducibility, and viral correlates. Hum Pathol 24(7):730–736PubMedCrossRefGoogle Scholar
  70. 70.
    Geng L, Connolly DC, Isacson C et al (1999) Atypical immature metaplasia (AIM) of the cervix: is it related to high-grade squamous intraepithelial lesion (HSIL)? Hum Pathol 30(3):345–351PubMedCrossRefGoogle Scholar
  71. 71.
    Gloor E, Hurlimann J (1986) Cervical intraepithelial glandular neoplasia (adenocarcinoma in situ and glandular dysplasia). A correlative study of 23 cases with histologic grading, histochemical analysis of mucins and immunohistochemical determination of the affinity for four lectins. Cancer 58:1272–1280PubMedCrossRefGoogle Scholar
  72. 72.
    Goldie SJ, Kim JJ, Wright TC (2004) Cost-effectiveness of human papillomavirus DNA testing for cervical cancer screening in women aged 30 years or more. Obstet Gynecol 103(4):619–631PubMedCrossRefGoogle Scholar
  73. 73.
    Guido RS, Jeronimo J, Schiffman M et al (2005) The distribution of neoplasia arising on the cervix: results from the ALTS trial. Am J Obstet Gynecol 193(4):1331–1337PubMedCrossRefGoogle Scholar
  74. 74.
    Hanselaar AG, Vooijs GP, Oud PS et al (1988) DNA ploidy patterns in cervical intraepithelial neoplasia grade III, with and without synchronous invasive squamous cell carcinoma: Measurements in nuclei isolated from paraffin-embedded tissue. Cancer 62:2537–2545PubMedCrossRefGoogle Scholar
  75. 75.
    Hariri J, Oster A (2007) The negative predictive value of p16INK4a to assess the outcome of cervical intraepithelial neoplasia 1 in the uterine cervix. Int J Gynecol Pathol 26(3):223–228PubMedCrossRefGoogle Scholar
  76. 76.
    Helper TK, Dockerty MB, Randall LM (1952) Primary adenocarcinoma of the cervix. Am J Obstet Gynecol 63:800–808Google Scholar
  77. 77.
    Higgins GD, Phillips GE, Smith LA et al (1992) High prevalence of human papillomavirus transcripts in all grades of cervical intraepithelial glandular neoplasia. Cancer 70:136–146PubMedCrossRefGoogle Scholar
  78. 78.
    Ho GY, Studentsov YY, Bierman R et al (2004) Natural history of human papillomavirus type 16 virus-like particle antibodies in young women. Cancer Epidemiol Biomarkers Prev 13(1):110–116PubMedCrossRefGoogle Scholar
  79. 79.
    Hoffman MS, Sterghos S Jr, Gordy LW et al (1993) Evaluation of the cervical canal with the endocervical brush. Obstet Gynecol 82(4 Pt 1):573–577PubMedGoogle Scholar
  80. 80.
    Holowaty P, Miller AB, Rohan T et al (1999) Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst 91(3):252–258PubMedCrossRefGoogle Scholar
  81. 81.
    Hopkins MP, Roberts JA, Schmidt RW (1988) Cervical adenocarcinoma in situ. Obstet Gynecol 71:842–844PubMedGoogle Scholar
  82. 82.
    Hurlimann J, Gloor E (1984) Adenocarcinoma in situ and invasive adenocarcinoma of the uterine cervix. An immunohistologic study with antibodies specific for several epithelial markers. Cancer 54(1):103–109PubMedCrossRefGoogle Scholar
  83. 83.
    IARC (2007) Human Papillomaviruses. IARC, LyonGoogle Scholar
  84. 84.
    Insinga RP, Glass AG, Rush BB (2004) Diagnoses and outcomes in cervical cancer screening: a population-based study. Am J Obstet Gynecol 191(1):105–113PubMedCrossRefGoogle Scholar
  85. 85.
    Ioffe OB, Sagae S, Moritani S et al (2003) Symposium part 3: Should pathologists diagnose endocervical preneoplastic lesions “less than” adenocarcinoma in situ?: point. Int J Gynecol Pathol 22(1):18–21PubMedCrossRefGoogle Scholar
  86. 86.
    Isacson C, Kessis TD, Hedrick L et al (1996) Both cell proliferation and apoptosis increase with lesion grade in cervical neoplasia but do not correlate with human papillomavirus type. Cancer Res 56(4):669–674PubMedGoogle Scholar
  87. 87.
    Ismail SM, Colelough AB, Dinnen JS et al (1989) Observer variation in histopathological diagnosis and grading of cervical intraepithelial neoplasia. BMJ 298:707–710PubMedCrossRefGoogle Scholar
  88. 88.
    Jakobsen A, Kristensen PB, Poulsen HK (1983) Flow cytometric classification of biopsy specimens from cervical intraepithelial neoplasia. Cytometry 4:166–169PubMedCrossRefGoogle Scholar
  89. 89.
    Jaworski RC, Pacey NR, Greenberg ML et al (1988) The histologic diagnosis of adenocarcinoma in situ and related lesions of the cervix uteri. Adenocarcinoma in situ. Cancer 61:1171–1181PubMedCrossRefGoogle Scholar
  90. 90.
    Jenson AB, Rosenthal JD, Olson C et al (1980) Immunologic relatedness of papillomavirus from different species. J Natl Cancer Instit 64:495–500Google Scholar
  91. 91.
    Johnson LD (1969) The histopathological approach to early cervical neoplasia. Obstet Gynecol Surv 24:735–767PubMedCrossRefGoogle Scholar
  92. 92.
    Jones BA, Davey DD (2000) Quality management in gynecologic cytology using interlaboratory comparison. Arch Pathol Lab Med 124(5):672–681PubMedGoogle Scholar
  93. 93.
    Jones BA, Novis DA (1996) Cervical biopsy-cytology correlation. A College of American Pathologists Q-Probes study of 22,439 correlations in 348 laboratories. Arch Pathol Lab Med 120(6):523–531PubMedGoogle Scholar
  94. 94.
    Jones BA, Novis DA (2000) Follow-up of abnormal gynecologic cytology: a college of American pathologists Q-probes study of 16132 cases from 306 laboratories. Arch Pathol Lab Med 124(5):665–671PubMedGoogle Scholar
  95. 95.
    Kashimura M, Shinohara M, Oikawa K et al (1990) An adenocarcinoma in situ of the uterine cervix that developed into invasive adenocarcinoma after 5 years. Gynecol Oncol 36:128–133PubMedCrossRefGoogle Scholar
  96. 96.
    Keating JT, Cviko A, Riethdorf S et al (2001) Ki-67, cyclin E, and p16INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia. Am J Surg Pathol 25(7):884–891PubMedCrossRefGoogle Scholar
  97. 97.
    Kim TJ, Kim HS, Park CT et al (1999) Clinical evaluation of follow-up methods and results of atypical glandular cells of undetermined significance (AGUS) detected on cervicovaginal Pap smears. Gynecol Oncol 73(2):292–298PubMedCrossRefGoogle Scholar
  98. 98.
    Kim JJ, Wright TC, Goldie SJ (2002) Cost-effectiveness of alternative triage strategies for atypical squamous cells of undetermined significance. JAMA 287(18):2382–2390PubMedCrossRefGoogle Scholar
  99. 99.
    Kinney WK, Manos MM, Hurley LB et al (1998) Where’s the high-grade cervical neoplasia? The importance of minimally abnormal Papanicolaou diagnoses. Obstet Gynecol 91(6):973–976PubMedCrossRefGoogle Scholar
  100. 100.
    Kirkland JA (1963) Atypical epithelial changes in the uterine cervix. J Clin Pathol 16:150–154PubMedCrossRefGoogle Scholar
  101. 101.
    Klaes R, Friedrich T, Spitkovsky D et al (2001) Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92(2):276–284PubMedCrossRefGoogle Scholar
  102. 102.
    Kolstad P, Klem V (1976) Long-term followup of 1121 cases of carcinoma in situ. Obstet Gynecol 48(2):125–129PubMedGoogle Scholar
  103. 103.
    Koss LG (1978) Dysplasia. A real concept or a misnomer? Obstet Gynecol 51:374PubMedCrossRefGoogle Scholar
  104. 104.
    Koss LG, Stewart FW, Foote FW et al (1963) Some histological aspects of behavior of epidermoid carcinoma in situ and related lesions of the uterine cervix. Cancer 16(9):1160–1211PubMedCrossRefGoogle Scholar
  105. 105.
    Kudo R, Sagai S, Hayakawa O et al (1991) Morphology of adenocarcinoma in situ and microinvasive adenocarcinoma of the uterine cervix. Acta Cytol 35:109–116PubMedGoogle Scholar
  106. 106.
    Kulasingam SL, Kim JJ, Lawrence WF et al (2006) Cost-effectiveness analysis based on the atypical squamous cells of undetermined significance/low-grade squamous intraepithelial lesion Triage Study (ALTS). J Natl Cancer Inst 98(2):92–100PubMedCrossRefGoogle Scholar
  107. 107.
    Kurman RJ, Ronnett BM, Sherman ME et al (2009) Tumors of the cervix, vagina and vulva. American Registry of Pathology in conjunction with Armed Forces Institute of Pathology, Washington, DCGoogle Scholar
  108. 108.
    Larson AA, Kern S, Curtiss S et al (1997) High resolution analysis of chromosome 3p alterations in cervical carcinoma. Cancer Res 57:4082–4090PubMedGoogle Scholar
  109. 109.
    Leary J, Jaworski R, Houghton R (1991) In-situ hybridization using biotinylated DNA probes to human papillomavirus in adenocarcinoma in-situ and endocervical glandular dysplasia of the uterine cervix. Pathology 23:85–89PubMedCrossRefGoogle Scholar
  110. 110.
    Lee KR (2003) Symposium part 4: Should pathologists diagnose endocervical preneoplastic lesions “less than” adenocarcinoma in situ?: counterpoint. Int J Gynecol Pathol 22(1):22–24PubMedCrossRefGoogle Scholar
  111. 111.
    Lee KR, Sun D, Crum CP (2000) Endocervical intraepithelial glandular atypia (dysplasia): a histopathologic, human papillomavirus, and MIB-1 analysis of 25 cases. Hum Pathol 31(6):656–664PubMedCrossRefGoogle Scholar
  112. 112.
    Liman AK, Giampoli EJ, Bonfiglio TA (2005) Should women with atypical squamous cells, cannot exclude high-grade squamous intraepithelial lesion, receive reflex human papillomavirus-DNA testing? Cancer 105(6):457–460PubMedCrossRefGoogle Scholar
  113. 113.
    Lonky NM, Felix JC, Naidu YM et al (2003) Triage of atypical squamous cells of undetermined significance with hybrid capture II: colposcopy and histologic human papillomavirus correlation. Obstet Gynecol 101(3):481–489PubMedCrossRefGoogle Scholar
  114. 114.
    Lonky NM, Sadeghi M, Tsadik GW et al (1999) The clinical significance of the poor correlation of cervical dysplasia and cervical malignancy with referral cytologic results. Am J Obstet Gynecol 181(3):560–566PubMedCrossRefGoogle Scholar
  115. 115.
    Luesley DM, Jordan JA, Woodman CBJ et al (1987) A retrospective review of adenocarcinoma-in-situ and glandular atypia of the uterine cervix. Br J Obstet Gynaecol 94:699–703PubMedCrossRefGoogle Scholar
  116. 116.
    Luff RD (1992) The Bethesda System for reporting cervical/vaginal cytologic diagnoses: report of the 1991 Bethesda workshop. The Bethesda System Editorial Committee. Hum Pathol 23(7):719–721PubMedCrossRefGoogle Scholar
  117. 117.
    Maiman M (1998) Management of cervical neoplasia in human immunodeficiency virus-infected women. J Natl Cancer Instit 23:43–49Google Scholar
  118. 118.
    Manos MM, Kinney WK, Hurley LB et al (1999) Identifying women with cervical neoplasia: using human papillomavirus DNA testing for equivocal Papanicolaou results. JAMA 281(17):1605–1610PubMedCrossRefGoogle Scholar
  119. 119.
    Marques T, Andrade LA, Vassallo J (1996) Endocervical tubal metaplasia and adenocarcinoma in situ: role of immunohistochemistry for carcinoembryonic antigen and vimentin in differential diagnosis. Histopathology 28(6):549–550PubMedCrossRefGoogle Scholar
  120. 120.
    Massad LS (2006) More is more: improving the sensitivity of colposcopy. Obstet Gynecol 108(2):246–247PubMedCrossRefGoogle Scholar
  121. 121.
    Massad LS, Collins YC, Meyer PM (2001) Biopsy correlates of abnormal cervical cytology classified using the Bethesda system. Gynecol Oncol 82(3):516–522PubMedCrossRefGoogle Scholar
  122. 122.
    McCann MF, Irwin DE, Walton LA et al (1992) Nicotine and cotinine in the cervical mucus of smokers, passive smokers, and nonsmokers. Cancer Epidemiol Biomarkers Prev 1:125–129PubMedGoogle Scholar
  123. 123.
    McCluggage WG (2007) Immunohistochemistry as a diagnostic aid in cervical pathology. Pathology 39(1):97–111PubMedCrossRefGoogle Scholar
  124. 124.
    McCluggage WG, Maxwell P, McBride HA et al (1995) Monoclonal antibodies Ki-67 and MIB1 in the distinction of tuboendometrial metaplasia from endocervical adenocarcinoma and adenocarcinoma in situ in formalin-fixed material. Int J Gynecol Pathol 14(3):209–216PubMedCrossRefGoogle Scholar
  125. 125.
    McCredie MR, Sharples KJ, Paul C et al (2008) Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol 9(5):425–434PubMedCrossRefGoogle Scholar
  126. 126.
    Melnikow J, Nuovo J, Willan AR et al (1998) Natural history of cervical squamous intraepithelial lesions: a meta-analysis. Obstet Gynecol 92(4 Pt 2):727–735PubMedCrossRefGoogle Scholar
  127. 127.
    Mitchell H, Hocking J, Saville M (2004) Cervical cytology screening history of women diagnosed with adenocarcinoma in situ of the cervix: a case-control study. Acta Cytol 48(5):595–600PubMedCrossRefGoogle Scholar
  128. 128.
    Mitchell H, Medley G, Gordon I et al (1995) Cervical cytology reported as negative and risk of adenocarcinoma of the cervix: no strong evidence of benefit. Br J Cancer 71(4):894–897PubMedCrossRefGoogle Scholar
  129. 129.
    Mitchell MF, Tortolero-Luna G, Wright T et al (1996) Cervical human papillomavirus infection and intraepithelial neoplasia: a review. J Natl Cancer Inst Monogr 21:17–25PubMedGoogle Scholar
  130. 130.
    Mittal KR, Chan W, Demopoulos RL (1990) Sensitivity and specificity of various morphological features of cervical condylomas. Arch Pathol Lab Med 114:1038–1041PubMedGoogle Scholar
  131. 131.
    Moscicki AB, Hills N, Shiboski S et al (2001) Risks for incident human papillomavirus infection and low-grade squamous intraepithelial lesion development in young females. JAMA 285:2995–3002PubMedCrossRefGoogle Scholar
  132. 132.
    Moscicki AB, Schiffman M, Kjaer S et al (2006) Chapter 5: Updating the natural history of HPV and anogenital cancer. Vaccine 24(Suppl 3):S42–S51CrossRefGoogle Scholar
  133. 133.
    Moscicki AB, Shiboski S, Hills NK et al (2004) Regression of low-grade squamous intra-epithelial lesions in young women. Lancet 364(9446):1678–1683PubMedCrossRefGoogle Scholar
  134. 134.
    Mourits MJE, Pieters WJ, Hollema H et al (1992) Three-group metaphase as a morphologic criterion of progressive cervical intraepithelial neoplasia. Am J Obstet Gynecol 167(3):591–595PubMedGoogle Scholar
  135. 135.
    Muñoz N, Castellsagué X, De González AB et al (2006) Chapter 1: HPV in the etiology of human cancer. Vaccine 24(Suppl 3):S1–S10. Epub 2006 Jun 23Google Scholar
  136. 136.
    Murphy N, Heffron CC, King B et al (2004) p16INK4A positivity in benign, premalignant and malignant cervical glandular lesions: a potential diagnostic problem. Virchows Arch 445(6):610–615PubMedCrossRefGoogle Scholar
  137. 137.
    Nasiell K, Nasiell M, Vaclavinkova V (1983) Behavior of moderate cervical dysplasia during long-term follow-up. Obstet Gynecol 61:609–614PubMedGoogle Scholar
  138. 138.
    Negri G, Egarter-Vigl E, Kasal A et al (2003) p16INK4a is a useful marker for the diagnosis of adenocarcinoma of the cervix uteri and its precursors: an immunohistochemical study with immunocytochemical correlations. Am J Surg Pathol 27(2):187–193PubMedCrossRefGoogle Scholar
  139. 139.
    Ng A (1993) Glandular diseases of the uterus. In: Keebler CM, Somrak TM (eds) The manual of cytotechnology. American Society of Clinical Pathologists, ChicagoGoogle Scholar
  140. 140.
    Nieminen P, Kallio M, Hakama M (1995) The effect of mass screening on incidence and mortality of squamous and adenocarcinoma of cervix uteri. Obstet Gynecol 85(6):1017–1021PubMedCrossRefGoogle Scholar
  141. 141.
    Ostor AG, Duncan A, Quinn M et al (2000) Adenocarcinoma in situ of the uterine cervix: an experience with 100 cases. Gynecol Oncol 79(2):207–210PubMedCrossRefGoogle Scholar
  142. 142.
    Ostor AG, Pagano R, Davoren RAM et al (1984) Adenocarcinoma in situ of the cervix. Int J Gynecol Pathol 3:179–190PubMedCrossRefGoogle Scholar
  143. 143.
    Park JJ, Genest DR, Sun D et al (1999) Atypical immature metaplastic-like proliferations of the cervix: diagnostic reproducibility and viral (HPV) correlates. Hum Pathol 30(10):1161–1165PubMedCrossRefGoogle Scholar
  144. 144.
    Park TJ, Richart RM, Sun X-W et al (1996) Association between HPV type and clonal status of cervical squamous intraepithelial lesions (SIL). J Natl Cancer Instit 88(66):355–358Google Scholar
  145. 145.
    Park JJ, Sun D, Quade BJ et al (2000) Stratified mucin-producing intraepithelial lesions of the cervix: adenosquamous or columnar cell neoplasia? Am J Surg Pathol 24(10):1414–1419PubMedCrossRefGoogle Scholar
  146. 146.
    Parkin DM (1991) Screening for cervix cancer in developing countries. In: Miller AB, Chamberlain J, Day NE, Hakama M, Prorok PC (eds) Cancer screening. Cambridge University Press, Cambridge, pp 184–198Google Scholar
  147. 147.
    Patten SF (1978) Diagnostic cytopathology of the uterine cervix. Karger, BasalGoogle Scholar
  148. 148.
    Pemberton FA, Smith GV (1929) The early diagnosis and prevention of carcinoma of the cervix: a clinical pathologic study of borderline cases treated at the Free Hospital for women. Am J Obstet Gynecol 17:165Google Scholar
  149. 149.
    Pieters WJ, Koudstaal J, Ploem-Zaajer JJ et al (1992) The three group metaphase as morphologic indicator of high ploidy cells in cervical intraepithelial neoplasia. Anal Quant Cytol Histol 14:227–232PubMedGoogle Scholar
  150. 150.
    Pirog EC, Isacson C, Szabolcs MJ et al (2002) Proliferative activity of benign and neoplastic endocervical epithelium and correlation with HPV DNA detection. Int J Gynecol Pathol 21(1):22–26PubMedCrossRefGoogle Scholar
  151. 151.
    Piyathilake CJ, Macaluso M, Alvarez RD et al (2009) Lower risk of cervical intraepithelial neoplasia in women with high plasma folate and sufficient vitamin B12 in the post-folic acid fortification era. Cancer Prev Res 2(7):658–664CrossRefGoogle Scholar
  152. 152.
    Plaxe SC, Saltzstein SL (1999) Estimation of the duration of the preclinical phase of cervical adenocarcinoma suggests that there is ample opportunity for screening. Gynecol Oncol 75(1):55–61PubMedCrossRefGoogle Scholar
  153. 153.
    Pretorius RG, Zhang X, Belinson JL et al (2006) Distribution of cervical intraepithelial neoplasia 2, 3 and cancer on the uterine cervix. J Low Genit Tract Dis 10(1):45–50PubMedCrossRefGoogle Scholar
  154. 154.
    Queiroz C, Silva TC, Alves VA et al (2006) Comparative study of the expression of cellular cycle proteins in cervical intraepithelial lesions. Pathol Res Pract 202(10):731–737PubMedCrossRefGoogle Scholar
  155. 155.
    Queiroz C, Silva TC, Alves VA et al (2006) P16(INK4a) expression as a potential prognostic marker in cervical pre-neoplastic and neoplastic lesions. Pathol Res Pract 202(2):77–83PubMedCrossRefGoogle Scholar
  156. 156.
    Quint KD, de Koning MN, Geraets DT et al (2009) Comprehensive analysis of Human Papillomavirus and Chlamydia trachomatis in in-situ and invasive cervical adenocarcinoma. Gynecol Oncol 114(3):390–394PubMedCrossRefGoogle Scholar
  157. 157.
    Ratnam S, Franco EL, Ferenczy A (2000) Human papillomavirus testing for primary screening of cervical cancer precursors. Cancer Epidemiol Biomarkers Prev 9(9):945–951PubMedGoogle Scholar
  158. 158.
    Renshaw AA, Mody DR, Lozano RL et al (2004) Detection of adenocarcinoma in situ of the cervix in Papanicolaou tests: comparison of diagnostic accuracy with other high-grade lesions. Arch Pathol Lab Med 128(2):153–157PubMedGoogle Scholar
  159. 159.
    Richart RM (1973) Cervical intraepithelial neoplasia: a review. Pathol Ann 8:301–328Google Scholar
  160. 160.
    Richart RM (1990) A modified terminology for cervical intraepithelial neoplasia. Obstet Gynecol 75(1):131–133PubMedGoogle Scholar
  161. 161.
    Richart RM, Lerch V, Baron B (1967) A time-lapse cinematographic study in vitro of mitosis in normal human cervical epithelium, dysplasia and carcinoma in situ. J Natl Cancer Instit 39:571Google Scholar
  162. 162.
    Riethdorf L, Riethdorf S, Lee KR et al (2002) Human papillomaviruses, expression of p16, and early endocervical glandular neoplasia. Hum Pathol 33(9):899–904PubMedCrossRefGoogle Scholar
  163. 163.
    Robertson AJ, Anderson JM, Beck JS et al (1989) Observer variability in histopathological reporting of cervical biopsy specimens. J Clin Pathol 42(3):231–238PubMedCrossRefGoogle Scholar
  164. 164.
    Ronnett BM, Manos MM, Ransley JE et al (1999) Atypical glandular cells of undetermined significance (AGUS): cytopathologic features, histopathologic results, and human papillomavirus DNA detection. Hum Pathol 30(7):816–825PubMedCrossRefGoogle Scholar
  165. 165.
    Salani R, Puri I, Bristow RE (2009) Adenocarcinoma in situ of the uterine cervix: a metaanalysis of 1278 patients evaluating the predictive value of conization margin status. Am J Obstet Gynecol 200(2):182e1–182e5CrossRefGoogle Scholar
  166. 166.
    Sawaya GF, McConnell KJ, Kulasingam SL et al (2003) Risk of cervical cancer associated with extending the interval between cervical-cancer screenings. N Engl J Med 349(16):1501–1509PubMedCrossRefGoogle Scholar
  167. 167.
    Schiffman M, Castle PE, Jeronimo J et al (2007) Human papillomavirus and cervical cancer. Lancet 370(9590):890–907PubMedCrossRefGoogle Scholar
  168. 168.
    Schmidt C, Pretorius RG, Bonin M et al (1992) Invasive cervical cancer following cryotherapy for cervical intraepithelial neoplasia or human papillomavirus infection. Obstet Gynecol 80(5):797–800PubMedGoogle Scholar
  169. 169.
    Sherman ME, Schiffman M, Cox JT et al (2002) Effects of age and HPV load on colposcopic triage: data from the ASCUS LSIL Triage Study (ALTS). J Natl Cancer Instit 94:102–107CrossRefGoogle Scholar
  170. 170.
    Sherman ME, Tabbara SO, Scott DR et al (1999) “ASCUS, rule out HSIL”: cytologic features, histologic correlates, and human papillomavirus detection. Mod Pathol 12(4):335–342PubMedGoogle Scholar
  171. 171.
    Shin CH, Schorge JO, Lee KR et al (2000) Conservative management of adenocarcinoma in situ of the cervix. Gynecol Oncol 79(1):6–10PubMedCrossRefGoogle Scholar
  172. 172.
    Shingleton HM, Richart RM, Wiener J et al (1968) Human cervical intraepithelial neoplasia. Fine structure of dysplasia and carcinoma in situ. Cancer Res 28:695–706PubMedGoogle Scholar
  173. 173.
    Sigurdsson K, Sigvaldason H (2007) Is it rational to start population-based cervical cancer screening at or soon after age 20? Analysis of time trends in preinvasive and invasive diseases. Eur J Cancer 43(4):769–774PubMedCrossRefGoogle Scholar
  174. 174.
    Smith JS, Green J, Berrington de Gonzalez A et al (2003) Cervical cancer and use of hormonal contraceptives: a systematic review. Lancet 361(9364):1159–1167PubMedCrossRefGoogle Scholar
  175. 175.
    Smith JS, Lindsay L, Hoots B et al (2007) Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer 121(3):621–632PubMedCrossRefGoogle Scholar
  176. 176.
    Snijders PJ, Steenbergen RD, Heideman DA et al (2006) HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol 208(2):152–164PubMedCrossRefGoogle Scholar
  177. 177.
    Solomon D, Davey D, Kurman R et al (2002) The 2001 Bethesda System: terminology for reporting results of cervical cytology. JAMA 287(16):2114–2119PubMedCrossRefGoogle Scholar
  178. 178.
    Solomon D, Stoler M, Jeronimo J et al (2007) Diagnostic utility of endocervical curettage in women undergoing colposcopy for equivocal or low-grade cytologic abnormalities. Obstet Gynecol 110(2):288–295PubMedCrossRefGoogle Scholar
  179. 179.
    Stanley M (2003) Chapter 17: Genital human papillomavirus infections – current and prospective therapies. J Natl Cancer Inst Monogr (31):117–124Google Scholar
  180. 180.
    Steben M, Duarte-Franco E (2007) Human papillomavirus infection: epidemiology and pathophysiology. Gynecol Oncol 107(2 Suppl 1):S2–S5PubMedCrossRefGoogle Scholar
  181. 181.
    Stoler MH, Schiffman M (2001) Interobserver reproducibility of cervical cytologic and histologic interpretations: realistic estimates from the ASCUS-LSIL Triage Study. JAMA 285(11):1500–1505PubMedCrossRefGoogle Scholar
  182. 182.
    Szarewski A, Cuzick J (1998) Smoking and cervical neoplasia; a review of the evidence. J Epidemiol Biostat 3:229Google Scholar
  183. 183.
    Szarewski A, Maddox P, Royston P et al (2001) The effect of stopping smoking on cervical Langerhans’ cells and lymphocytes. BJOG 108(3):295–303PubMedGoogle Scholar
  184. 184.
    Tase T, Okagaki T, Clark BA et al (1989) Human papillomavirus DNA in adenocarcinoma in situ, microinvasive adenocarcinoma of the uterine cervix and coexisting cervical squamous intraepithelial neoplasia. Int J Gynecol Pathol 8(1):8–17PubMedCrossRefGoogle Scholar
  185. 185.
    Tase T, Okagaki T, Clark BA et al (1989) Human papillomavirus DNA in glandular dysplasia and microglandular hyperplasia: presumed precursors of adenocarcinoma of the uterine cervix. Obstet Gynecol 73(6):1005–1008PubMedCrossRefGoogle Scholar
  186. 186.
    Tavassoli FA, Devilee P (eds) (2003) Pathology and genetics of tumours of the breast and female genital organs. World Health Organization Classification of Tumors. IARC, LyonGoogle Scholar
  187. 187.
    Trowell JE (1985) Intestinal metaplasia with argentaffin cells in the uterine cervix. Histopathology 9:561–569CrossRefGoogle Scholar
  188. 188.
    Tsoumpou I, Arbyn M, Kyrgiou M et al (2009) p16(INK4a) immunostaining in cytological and histological specimens from the uterine cervix: a systematic review and meta-analysis. Cancer Treat Rev 35(3):210–220PubMedCrossRefGoogle Scholar
  189. 189.
    Ueda Y, Enomoto T, Miyatake T et al (2003) Monoclonal expansion with integration of high-risk type human papillomaviruses is an initial step for cervical carcinogenesis: association of clonal status and human papillomavirus infection with clinical outcome in cervical intraepithelial neoplasia. Lab Invest 83(10):1517–1527PubMedCrossRefGoogle Scholar
  190. 190.
    Ursin G, Pike MC, Preston-Martin S et al (1996) Sexual, reproductive, and other risk factors for adenocarcinoma of the cervix: results from a population-based case-control study (California, United States) [see comments]. Cancer Causes Control 7(3):391–401PubMedCrossRefGoogle Scholar
  191. 191.
    Van Ranst MS, Tachezy R, Delius H et al (1993) Taxonomy of the human papillomaviruses. Papillomavirus Rep 4:61–65Google Scholar
  192. 192.
    Wang SS, Sherman ME, Hildesheim A et al (2004) Cervical adenocarcinoma and squamous cell carcinoma incidence trends among white women and black women in the United States for 1976–2000. Cancer 100(5):1035–1044PubMedCrossRefGoogle Scholar
  193. 193.
    Wang SS, Trunk M, Schiffman M et al (2004) Validation of p16INK4a as a marker of oncogenic human papillomavirus infection in cervical biopsies from a population-based cohort in Costa Rica. Cancer Epidemiol Biomarkers Prev 13(8):1355–1360PubMedGoogle Scholar
  194. 194.
    Wang SS, Wheeler CM, Hildesheim A et al (2001) Human leukocyte antigen class I and II alleles and risk of cervical neoplasia: results from a population-based study in Costa Rica. J Infect Dis 184(10):1310–1314PubMedCrossRefGoogle Scholar
  195. 195.
    Ward BE, Burkett BA, Peterson C et al (1990) Cytological correlates of cervical papillomavirus infection. Int J Gynecol Pathol 9:297–305PubMedCrossRefGoogle Scholar
  196. 196.
    Wells M, Ostor AG, Franceschi S et al (2003) Epithelial tumors of the uterine cervix. In: Tavassoli FA, Devilee P (eds) Tumors of the breast and female genital organs. IARC, Lyon, pp 221–232Google Scholar
  197. 197.
    Wheeler CM, Hunt WC, Schiffman M et al (2006) Human papillomavirus genotypes and the cumulative 2-year risk of cervical precancer. J Infect Dis 194(9):1291–1299PubMedCrossRefGoogle Scholar
  198. 198.
    Williams J (1888) Cancer of the uterus: Harveian lectures for 1886. Lewis, LondonGoogle Scholar
  199. 199.
    Winer RL, Hughes JP, Feng Q et al (2006) Condom use and the risk of genital human papillomavirus infection in young women. N Engl J Med 354(25):2645–2654PubMedCrossRefGoogle Scholar
  200. 200.
    Winer RL, Lee SK, Hughes JP et al (2003) Genital human papillomavirus infection: incidence and risk factors in a cohort of female university students. Am J Epidemiol 157(3):218–226PubMedCrossRefGoogle Scholar
  201. 201.
    Workshop NCI (1991) The revised Bethesda System for reporting cervical/vaginal cytologic diagnoses. Report of the 1991 Bethesda Workshop. JAMA 267:1892Google Scholar
  202. 202.
    Wright TC Jr (2006) Chapter 3: Pathology of HPV infection at the cytologic and histologic levels: basis for a 2-tiered morphologic classification system. Int J Gynaecol Obstet 94(Suppl 1):S22–S31CrossRefGoogle Scholar
  203. 203.
    Wright TC Jr, Cox JT, Massad LS et al (2002) 2001 consensus guidelines for the management of women with cervical cytological abnormalities. JAMA 287(16):2120–2129PubMedCrossRefGoogle Scholar
  204. 204.
    Wright TC, Kuhn L (2006) Immunosuppression and the cervix: human immunodeficiency virus (HIV). In: Jordan JA, Singer A (eds) The cervix. Blackwell, Malden, pp 450–517Google Scholar
  205. 205.
    Wright TC, Kurman RJ (1994) A critical review of the morphologic classification systems of preinvasive lesions of the cervix: the scientific basis of the paradigm. Papillomavirus Rep 5:175–181Google Scholar
  206. 206.
    Wright TC Jr, Massad LS, Dunton CJ et al (2007) 2006 consensus guidelines for the management of women with abnormal cervical cancer screening tests. Am J Obstet Gynecol 197(4):346–355PubMedCrossRefGoogle Scholar
  207. 207.
    Wright TC Jr, Massad LS, Dunton CJ et al (2007) 2006 consensus guidelines for the management of women with abnormal cervical screening tests. J Low Genit Tract Dis 11(4):201–222PubMedCrossRefGoogle Scholar
  208. 208.
    Wright TC Jr, Massad LS, Dunton CJ et al (2007) 2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ. Am J Obstet Gynecol 197(4):340–345PubMedCrossRefGoogle Scholar
  209. 209.
    Wright TC, Schiffman M (2003) Adding a test for human papillomavirus DNA to cervical-cancer screening. New Eng J Med 348(6):489–490PubMedCrossRefGoogle Scholar
  210. 210.
    Young RH, Scully RE (1989) Atypical forms of microglandular hyperplasia of the cervix simulating carcinoma. Am J Surg Pathol 13:50–56PubMedCrossRefGoogle Scholar
  211. 211.
    Zhang Q, Kuhn L, Denny LA et al (2007) Impact of utilizing p16INK4A immunohistochemistry on estimated performance of three cervical cancer screening tests. Int J Cancer 120(2):351–356PubMedCrossRefGoogle Scholar
  212. 212.
    zur Hausen H (1977) Human papillomaviruses and their possible role in squamous cell carcinomas. Curr Top Microbiol Immunol 78:1–30PubMedCrossRefGoogle Scholar
  213. 213.
    zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2(5):342–350PubMedCrossRefGoogle Scholar
  214. 214.
    zur Hausen H (2009) The search for infectious causes of human cancers: where and why (Nobel lecture). Angewandte Chemie 48(32):5798–5808PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Thomas C. Wright
    • 1
  • Brigitte M. Ronnett
    • 2
  • Robert J. Kurman
    • 3
  • Alex Ferenczy
    • 4
  1. 1.Department of PathologyColumbia Presbyterian Medical CenterNew YorkUSA
  2. 2.Department of Pathology, Division of Gynecologic PathologyJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Departments of Gynecology, Obstetrics, Pathology and Oncology, Division of Gynecologic PathologyJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Jewish General HospitalMcGill UniversityMontrealCanada

Personalised recommendations