Encyclopedia of Global Archaeology

2014 Edition
| Editors: Claire Smith

Fourier Transform Infrared Spectroscopy (FTIR): Applications in Archaeology

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0465-2_343

Introduction

Few techniques for chemical analysis are as rapid and informative as Fourier transform infrared spectroscopy (FTIR). FTIR can be used to identify and compare sample compositions and in a quantitative fashion to determine the concentration of different components of a mixture (Smith 1999: 1). Its popularity in the field of conservation reflects attributes that make the technique appealing for many archaeological applications as well, including the small amount of sample required for analysis (milligrams or micrograms) and the fact that samples can be organic or inorganic and have a crystalline or amorphous structure. Its wide applicability makes FTIR a particular asset to nearly any professional archaeology laboratory as it can aid in determining the composition of such materials as fired clays, bone and tooth enamel, wood ash, fibers and dyes, plasters, and resins.

Infrared spectroscopy (IR) is used to identify the functional groups that are the building blocks of...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

Special thanks to Don Mullally of MIDAC Corporation (Costa Mesa, CA, USA) for providing information on current MIDAC products and pricing. Rebecca Whelan and Jason Haugen offered helpful comments on this entry.

References

  1. Beck, C.W., E. Wilbur, S. Meret, D. Kossove & K. Kermani. 1965. The infrared spectra of amber and the identification of Baltic amber. Archaeometry 8: 96-109.Google Scholar
  2. Coleman, P.B. 1993. Practical sampling techniques for infrared analysis. Boca Raton: CRC Press.Google Scholar
  3. Damjanović, L., I. Holclajtner-Antunović, U.B. Mioč, V. Bikić, D. Milovanović & I. Radosavljević Evans. 2011. Archaeometric study of medieval pottery excavated at Stari (Old) Ras, Serbia. Journal of Archaeological Science 38: 818-28.Google Scholar
  4. Doménech Carbó, M.T., F. Bosch Reif, J.V. Gimeno Adelantado & V. Periz Marínez. 1996. Fourier transform infrared spectroscopy and the analytical study of works of art for purposes of diagnosis and conservation. Analytica Chimica Acta 330: 207-15.Google Scholar
  5. Karkanas, P., N. Kyparissi-Apostolika, O. Bar-Yosef & S. Weiner. 1999. Mineral assemblages in Theopetra, Greece: a framework for understanding diagenesis in a prehistoric cave. Journal of Archaeological Science 26: 1171-80.Google Scholar
  6. Lebon, M., I. Reiche, J.-J. Bahain, C. Chadefaux, A.-M. Moigne, F. Fröhlich, F. Sémah, H.P. Schwarcz & C. Falguères. 2010. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. Journal of Archaeological Science 37: 2265-76.Google Scholar
  7. Liu, J., D. Guo, Y. Zhou, Z. Wu, W. Li, F. Zhao & X. Zheng. 2011. Identification of ancient textiles from Yingpan, Xinjiang, by multiple analytical techniques. Journal of Archaeological Science 38: 1763-70.Google Scholar
  8. Lluveras, A., A. Torrents, P. Giráldez & M. Vendrell-Saz. 2010. Evidence for the use of Egyptian blue in an 11th century mural altarpiece by SEM-EDS, FTIR and SR XRD (Church of Sant Pere, Terrassa, Spain). Archaeometry 52: 308-19.Google Scholar
  9. Peñalver, E., E. Álvarez-Fernández, P. Arias, X. Delclòs & R. Ontañón. 2007. Local amber in a Palaeolithic context in Cantabrian Spain: the case of La Garma A. Journal of Archaeological Science 37: 2265-76.Google Scholar
  10. Roche, D., L. Ségalen, E. Balan & S. Delattre. 2010. Preservation assessment of Miocene-Pliocene tooth enamel from Tugen Hills (Kenyan Rift Valley) through FTIR, chemical and stable-isotope analyses. Journal of Archaeological Science 37: 1690-9.Google Scholar
  11. Schiegl, S., P. Goldberg, O. Bar-Yosef & S. Weiner. 1996. Ash deposits in Hayonim and Kebara Caves, Israel: macroscopic, microscopic and mineralogical observations, and their archaeological implications. Journal of Archaeological Science 23: 763-81.Google Scholar
  12. Smith, B. 1999. Infrared spectral interpretation: a systematic approach. Boca Raton: CRC Press.Google Scholar
  13. - 2011. Fundamentals of Fourier transform infrared spectroscopy. Boca Raton: CRC Press.Google Scholar
  14. Stiner, M.C., S.L. Kuhn, S. Weiner & O. Bar-Yosef. 1995. Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science 22: 223-37.Google Scholar
  15. Stiner, M.C., S.L. Kuhn, T.A. Surovell, P. Goldberg, L. Meignen, S. Weiner & O. Bar-Yosef. 2001. Bone preservation in Hayonim Cave (Israel): a macroscopic and mineralogical study. Journal of Archaeological Science 28: 643-59.Google Scholar
  16. Surovell, T.A. & M.C. Stiner. 2001. Standardizing infra-red measures of bone mineral crystallinity: an experimental approach. Journal of Archaeological Science 28: 633-42.Google Scholar
  17. Thompson, T.J.U., M. Gauthier & M. Islam. 2009. The application of a new method of Fourier transform infrared spectroscopy to the analysis of burned bone. Journal of Archaeological Science 36: 910-14.Google Scholar
  18. Weiner, S., P. Goldberg & O. Bar-Yosef. 1993. Bone preservation in Kebara Cave, Israel using on-site Fourier transform infrared spectroscopy. Journal of Archaeological Science 20: 613-27.Google Scholar
  19. - 2002. Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: diagenetic processes and archaeological implications. Journal of Archaeological Science 29: 1289-308.Google Scholar
  20. Wright, L.E. & H.P. Schwarcz. 1996. Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. Journal of Archaeological Science 23: 933-44.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of AnthropologyOberlin CollegeOberlinUSA