Introduction
Organic residues of substances that were used in the past can survive as visible amorphous residues or trapped in the porous of archaeological materials, such as ceramic matrix or plasters. The study of these residues has relied on the possibility of identifying markers or indicators of the different substances (biomarkers) that survive through time and different postdepositional environments (Evershed 1993, 2008a).
The study of these residues that can be performed with a number of analyses, instruments, and extraction methods has provided archaeologists with interesting data on different aspects of the ancient way of life.
Historical Background
As Evershed has recently shown, a major influence in the development of the field was the emergence of a new generation of analytical chemical methodologies in the middle of the twentieth century that enabled complex environmental materials to be studied in increasingly fine detail (Evershed 2008a). Nevertheless, it was the...
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Barba, L. 2007. Chemical residues in lime plastered archaeological floors. Geoarchaeology 22: 439-52.
Barnard, H. & J.W. Eerkens. (ed.) 2007. Theory and practice of archaeological residue analysis (BAR International series 1650). Oxford: Archaeopress.
Berstan, R., A.W. Stott, S. Minnitt, C. Bronk Ramsey, R.E.M. Hedges & R.P. Evershed. 2008. Direct dating of pottery from its organic residues: new precision using compound-specific carbon isotopes. Antiquity 82: 702-13.
Brown, T. & K. Brown. 2011. Biomolecular archaeology: an introduction. Chichester: Wiley.
Bull, I.D., M.M. Elhmmali, D.J. Roberts & R.P.Evershed. 2003. The application of steroid biomarkers to track the abandonment of a Roman water course at the Agora (Athens, Greece). Archaeometry 45: 149-61.
Colombini, M.P. & F. Modugno. 2009. Organic mass spectrometry in art and archaeology. Chichester: Wiley.
Condamin, J., F. Formenti, M.O. Metais, M. Michel & P. Bond. 1976. The application of gas chromatography to the tracing of oil in ancient amphorae. Archaeometry 18: 195-201.
Evershed, R.P. 1993. Biomolecular archaeology and lipids. World Archaeology 25: 74-93.
- 2008a. Organic residues in archaeology: the archaeological biomarker revolution. Archaeometry 50: 895-924.
- 2008b. Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. World Archaeology 40: 26-47.
Garnier, N. 2007. Analyse de résidus organiques conservés dans des amphores: un état de la question, in M. Bonifay & J.C. Tréglia (ed.) Late Roman coarse wares, cooking wares and amphorae in the mediterranean. Archaeology and archaeometry. LRCW: 39-49 (BAR International series 16622). Oxford: Archaeopress.
Garnier, N., C. Rolando, J.M. Hotje & C. Tokarski. 2009. Analysis of archaeological triacylglycerols by high resolution nanoESI, FT-ICR MS and IRMPD MS/MS: application to 5th century BC-4th century AD oil lamps from Olbia (Ukraine). Journal of Mass Spectrometry 284: 47-56.
Guasch-Jané, M.R., M. Iberno Gómez, C. Andrés-Lacueva, O. Jáuregui & R.M. Lamuela-Raventós 2006. First evidence of white wine in ancient Egypt from Tutankhamen’s tomb. Journal of Archaeological Science 33: 1075-80.
Hansson, M. & B. Foley. 2008. Ancient DNA fragments inside classical Greek amphoras reveal cargo of 2400-year-old shipwreck. Journal of Archaeological Science 35: 1169-76.
Heron, C. & A.M. Pollard. 1988. The analysis of natural resinous materials from amphoras, in Science and Archaeology [Glasgow 1987]. Oxford: BAR.
Loy, T.H. & E.J. Dixon. 1998. Blood residues on fluted points from Eastern Beringia. American Antiquity 63: 21-46.
Mcgovern, P. 2010. Uncorking the past: the quest for wine, beer, and other alcoholic beverages. Berkeley: University of California Press
McGovern, P.E, D.L. Glusker, R.A. Moreau, A. Nunez, C.W. Beck, E. Simpson, E.D. Butrym, L.J. Exner & E.C. Stout. 1999. Funerary feast fit for King Midas. Nature 402: 863-4.
Middleton, W.D., L. Barba, A. Pecci, J.H Burton, A. Ortiz, L. Salvini & R. Rodriguez Suárez. 2010. The study of archaeological floors: methodological proposal for the analysis of anthropogenic residues by spot tests, ICP-OES, and GC-MS, Journal of Archaeological Method and Theory 17: 183-208.
Mills, J.S. & R. White. 1987. The organic chemistry of museum objects. Oxford: Butterworth-Heinemann.
Pecci, A., G. Giorgi, L. Salvini, & M.Á. Cau Ontiveros. 2013. Identifying wine markers in ceramics and plasters with gas chromatography-mass spectrometry. Experimental and archaeological materials, Journal of Archaeological Science 40: 109-115.
Pecci, A., L. Salvini, E. Cirelli & A. Augenti. 2010. Residue analysis of some Late Roman amphorae coming from the port of Classe (Ravenna - Italy): relationship between form and function, in S. Menchelli, M. Pasquinucci & S. Santoro (ed.) LRCW3. Late Roman coarse wares, cooking wares and amphorae in the Mediterranean. Archaeology and archaeometry (BAR International series 2185): 617-22. Oxford: Archaeopress.
Reber, E.A. & R.P. Evershed. 2004. How did Mississippians prepare maize? The application of compound-specific carbon isotope analysis to absorbed pottery residues from several Mississippi valley sites. Archaeometry 46: 19-33.
Regert, M. 2011. Analytical strategies for discriminating archeological fatty substances from animal origin. Mass Spectrometry Reviews 30: 177-220.
Regert, M., T. Devièse, A.S. Le Hô & A. Rougeulle. 2008. Reconstructing ancient Yemeni commercial routes during the Middle-Ages using structural characterisation of terpenoid resins. Archaeometry 50: 668-95.
Stern, B., J. Connan, E. Blakelock, R. Jackman, R.A. Coningham & C. Heron. 2008. From Susa to Anuradhapura: reconstructing aspects of trade and exchange in bitumen - coated ceramic vessels between Iran and Sri Lanka from the third to the ninth centuries AD. Archaeometry 50: 409-28.
van Bergen, P. F., I.D. Bull, P.R. Poulton & R.P. Evershed. 1997. Organic geochemical studies of soils from the Rothamsted classical experiments–I. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk Wilderness. Organic Geochemistry 26: 117–135.
Webb, E.A., P.S. Henry & P.F. Healy. 2004. Detection of ancient maize in lowland Maya soils using stable carbon isotopes: evidence from Caracol, Belize. Journal of Archaeological Science 31: 1039-52.
Wells, E.C. & J. E. Moreno Cortés. 2010. Chimie du sol et activités humaines anciennes: les exemples archéologiques du Mexique et d’Amérique centrale. Etude et Gestion des Sols 17 (1): 67-78.
Further Reading
Ciliberto, E. & G. Spoto. 2000. Modern analytical methods in art and archaeology. New York: Wiley-Interscience.
Pollard, M. & C. Heron. 2008. Archaeological chemistry. Cambridge: Royal Society of Chemistry.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this entry
Cite this entry
Pecci, A. (2014). Organic Residue Analysis in Archaeology. In: Smith, C. (eds) Encyclopedia of Global Archaeology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0465-2_334
Download citation
DOI: https://doi.org/10.1007/978-1-4419-0465-2_334
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-0426-3
Online ISBN: 978-1-4419-0465-2
eBook Packages: Humanities, Social Sciences and LawReference Module Humanities and Social Sciences