Skip to main content

Phytolith Studies in Archaeology

  • Reference work entry

Introduction

Phytolith analysis is a micro-botanical technique used in archaeology to study ancient plant remains. Phytoliths are opaline silica bodies formed during the lifetime of a wide variety of plant taxa within and between certain cells. These micro-remains can provide insight into ancient diet, the non-food uses of plants (such as for fuel or weaving), spatial arrangements of plant use and discard across settlements, agricultural practices, and seasonality of pre-agrarian site occupations. The durability of these micro-remains makes them particularly valuable at archaeological sites where preservation conditions are not suited to the survival of charred, desiccated, or waterlogged macro-remains. Phytoliths provide both complementary and unique information about plant use at sites where charred macrobotanical remains (cereals, seeds) are present since these datasets preserve information about different suites of plant parts and enter the archaeological record through different...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert, R.M. & C.W. Marean. 2012. The exploitation of plant resources by early Homo sapiens: the phytolith record from Pinnacle Point 13B Cave, South Africa. Geoarchaeology 27: 363–384.

    Google Scholar 

  • Albert, R.M. & S. Weiner. 2001. Study of phytoliths in prehistoric ash layers using a quantitative approach, in J.D. Meunier & F. Colin (ed.) Phytoliths: applications in earth sciences and human history: 251-266. Lisse: A.A. Balkema Publishers.

    Google Scholar 

  • Albert, R.M., R. Shahack-Gross, D. Cabanes, A. Gilboa, S. Levyadun, M. Portillo, I. Sharon, E. Boaretto & S. Weiner. 2008. Phytolith-rich layers from the Late Bronze and Iron Ages at Tel Dor (Israel): mode of formation and archaeological significance. Journal of Archaeological Science 35: 57-75.

    Google Scholar 

  • Ball, T.B., J.S. Gardner & N. Anderson. 1999. Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Gramineae). American Journal of Botany 86: 1615–1623.

    Google Scholar 

  • Bozarth, S.R. 1992. Classification of opal phytoliths formed in selected dicotyledons native to the great plains, in G. Rapp Jr. & S.C. Mulholland (ed.) Phytolith systematics: emerging issues: 193-214. London: Plenum Press.

    Google Scholar 

  • Fuller, D.Q., Y.-I. Sato, C. Castillo, L. Qin, A.R. Weisskopf, E.J. Kingwell-Banham, J. Song, S.-M. Ahn & J. van Etten. 2010. Consilience of genetics and archaeobotany in the entangled history of rice. Archaeological and Anthropological Sciences 2: 115-131.

    Google Scholar 

  • Harvey, E.L. & D.Q. Fuller. 2005. Investigating crop processing through phytolith analysis: the case of rice and millets, Journal of Archaeological Science 32: 739-752.

    Google Scholar 

  • Henry, A.G. & D.R. Piperno. 2008. Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqa'i, Syria. Journal of Archaeological Science 35(7): 1943-1950.

    Google Scholar 

  • Jenkins, E.L. 2009. Phytolith taphonomy: a comparison of dry ashing and acid extraction on the breakdown of conjoined phytoliths formed in Triticum durum. Journal of Archaeological Science 36(10): 2402-2407.

    Google Scholar 

  • Jenkins, E.L., K. Jamjoum, & S. Nuimat. 2011. Irrigation and phytolith formation: an experimental study, in S.J. Mithen & E. Black (ed.) Water, life and civilization: climate, environment and society in the Jordan Valley.: 347-372. Cambridge/New York: Cambridge University Press/UNESCO.

    Google Scholar 

  • Iriarte, J. 2003. Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America, Journal of Archaeological Science 30(9): 1085-1094.

    Google Scholar 

  • Lu, H., J. Zhang, N. Wu, K.B. Liu, D. Xu & Q. Li. 2009. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS ONE 4: 1-15.

    Google Scholar 

  • Madella, M. & C. Lancelotti. 2012. Taphonomy and phytoliths: a user manual, Quaternary International: 76-83.

    Google Scholar 

  • Madella, M., A. Alexandre & T. Ball. 2005. International code for phytolith nomenclature 1.0. Annals of Botany 96: 253–260.

    Google Scholar 

  • Madella, M., M.K. Jones, P. Goldberg, Y. Goren & E. Hovers. 2002. The exploitation of plant resources by Neanderthals in Amud Cave (Israel): the evidence from phytolith studies. Journal of Archaeological Science 29: 703-719.

    Google Scholar 

  • Madella, M., M.K. Jones, P. Echlin, A. Powers-Jones & M. Moore. 2009. Plant water availability and analytical microscopy of phytoliths: Implications for ancient irrigation in arid zones. Quaternary International 193: 32-40.

    Google Scholar 

  • Madella, M., C. Lancelotti & J.J GarcÚa-Granero. 2013. Millet microremains–an alternative approach to understand cultivation and use of critical crops in Prehistory Archaeological and Anthropological Sciences (published online February 2013) doi: 10.1007/s12520-013-0130-y.

    Google Scholar 

  • Mercader, J., F. Runge, L. Vrydaghs, H. Doutrelepont, C. E.N. Ewango & J. Juan-Tresseras. 2000. Phytoliths from archaeological sites in the tropical forest of Ituri, Democratic Republic of Congo. Quaternary Research 54 (1): 102-112.

    Google Scholar 

  • Metcalfe, C. 1960. Anatomy of the monocotyledons I. Gramineae. London: Oxford University Press

    Google Scholar 

  • Metcalfe, C.R. & L. Chalk. 1983.Anatomy of the dicotyledons, Volume II: wood structure and conclusion of the general introduction. Oxford: Oxford University Press.

    Google Scholar 

  • Mithen, S., E. Jenkins, K. Jamjoum, S. Nuimat. S. Nortcliff & B. Finlayson.2008. Experimental crop growing in Jordan to develop methodology for the identification of ancient crop irrigation. World Archaeology 40(1): 7-25. doi: 10.1080/00438240701843561

    Google Scholar 

  • Ollendorf, A.L., S.C. Mulholland & G. Rapp. Jr.1988. Phytolith analysis as a means of plant identification: Arundo donax and Phragmites communis. Annals of Botany 61: 209-214.

    Google Scholar 

  • Pearsall, D.M., D.R. Piperno, E.H. Dinan, M. Umlauf, Z. Zhao & R.A Benfer, Jr. 1995. Distinguishing rice (Oryza sativa Poaceae) from wild oryza species through phytolith analysis: results of preliminary research. Economic Botany 49(2): 183-196.

    Google Scholar 

  • Pearsall, D.M., K. Chandler-Ezell & A. Chandler-Ezell. 2003. Identifying maize in neotropical sediments and soils using cob phytoliths. Journal of Archaeological Science 30: 611-627.

    Google Scholar 

  • Piperno, D.R. 1988. Phytolith analysis: an archaeological and geological perspective. San Diego: Academic Press.

    Google Scholar 

  • - 2006. Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Lanham: Alta Mira Press.

    Google Scholar 

  • - 2009. Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quaternary International 193: 146-159.

    Google Scholar 

  • Portillo, M. & R.M. Albert. 2011. Husbandry practices and livestock dung at the Numidian site of Althiburos (el Médéina, Kef Governorate, northern Tunisia): the phytolith and spherulite evidence. Journal of Archaeological Science 38(12): 3224-33.

    Google Scholar 

  • Radomski, K.U. & K. Neumann. 2011. Grasses and grinding stones: inflorescence phytoliths from modern West African Poaceae and archaeological stone artefacts, in A.G. Fahmy, S. Kahlheber & A.C. D’Andrea (ed.) Windows on the African past: current approaches to African archaeobotany: 153-166. Frankfurt: Africa Magna Verlag.

    Google Scholar 

  • Rosen, A. 2010. Natufian plant exploitation: managing risk and stability in an environment of change. Eurasian Prehistory 7(1): 117-131.

    Google Scholar 

  • Rosen, A.M. 1992. Preliminary identification of silica skeletons from Near Eastern archaeological sites: an anatomical approach, in G. Rapp Jr. & S.C. Mulholland (ed.) Phytolith systematics: emerging issues: 129-148. New York: Plenum Press.

    Google Scholar 

  • - 2005. Phytolith indicators of plant and land use at Çatalhöyük, in I. Hodder (ed.) Inhabiting Çatalhöyük, reports from the 1995-99 seasons: 203-212. Cambridge: London, McDonald Institute for Archaeological Research, British Institute of Archaeology at Ankara.

    Google Scholar 

  • Rosen, A.M. & S. Weiner. 1994. Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. Journal of Archaeological Science 21: 132-135.

    Google Scholar 

  • Rovner, I. 1971. Potential of opal phytoliths for use in paleoecological reconstruction. Journal of Ethnobiology 1(3): 343–359.

    Google Scholar 

  • - 2001. Cultural behaviour and botanical history: phytolith analysis in small places and narrow intervals, in J.D. Meunier & F. Colin (ed.) Phytoliths: applications in earth sciences and human history: 119-128. Lisse: A.A. Balkema Publishers.

    Google Scholar 

  • Ryan, P. 2011. Plants as material culture in the Near Eastern Neolithic: perspectives from the silica skeleton artifactual remains at Çatalhöyük. Journal of Anthropological Archaeology 30(3): 292-305.

    Google Scholar 

  • - In press. Plant exploitation from household and landscape perspectives: the phytolith evidence, in I. Hodder (ed.) Humans and landscapes of Çatalhöyük: reports from the 2000-2008 seasons: Chapter 9, Volume 8. Los Angeles: Cotsen Institute of Archaeology Press at UCLA.

    Google Scholar 

  • Ryan, P., C.R. Cartwright & N. Spencer. 2012. Archaeobotanical research in a pharaonic town in ancient Nubia. British Museum Technical Research Bulletin 6: 97-106.

    Google Scholar 

  • Shillito, L.M. 2011. Simultaneous thin section and phytolith observations of finely stratified deposits from Neolithic Çatalhöyük, Turkey: implications for paleoeconomy and Early Holocene paleoenvironment Journal of Quaternary Science 26(6): 576 – 588.

    Google Scholar 

  • Tsartsidou, G., S. Lev-Yadun, N. Efstratiou & S. Weiner. 2008. Ethnoarchaeological study of phytolith assemblages from an agro-pastoral village in northern Greece (Sarakini): development and application of a Phytolith Difference Index. Journal of Archaeological Science 35(3): 600-613.

    Google Scholar 

  • Tubb, H.J., M.J. Hodson & G.C. Hodson. 1993. The inflorescence papillae of the Triticeae: a new tool for taxonomic and archaeological research. Annals of Botany 72: 537–545.

    Google Scholar 

  • Twiss, P. C. 1992. Predicted world distribution of C3 and C4 grass phytoliths, in G. Rapp Jr. & S.C. Mulholland (ed.) Phytolith systematics: emerging issues: 113-128. New York: Plenum Press.

    Google Scholar 

  • Vrydaghs, L, R. Swennen, C. Mbida, H. Doutrelepont, E.D. Langhe & P.D. Maret. 2003. The banana phytolith as a direct marker of early agriculture: a review of the evidence, in D.M. Hart & L.A. Wallis (ed.) Phytolith and starch research in the Australian-Pacific-Asian regions: the state of the art (Terra Australis 19): 177-85. Canberra: Pandanus Books.

    Google Scholar 

  • Zhang, J.H. Lu, N. Wu, X. Yang & X. Diao. 2011. Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis). PLoS ONE 6(5): e19726.

    Google Scholar 

  • Zhao, Z., D. Pearsall, R. Benfer & D. Piperno.1998. Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II finalized method. Economic Botany 52: 134-145.

    Google Scholar 

  • Zheng, Y., Y. Dong, A. Matsui, E. Udatsu & H. Fuijiwara. 2003. Molecular genetic basis of determining subspecies of ancient rice using shape of phytoliths. Journal of Archaeological Science 30: 1215–1221.

    Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippa Ryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Ryan, P. (2014). Phytolith Studies in Archaeology. In: Smith, C. (eds) Encyclopedia of Global Archaeology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0465-2_2258

Download citation