Skip to main content

Geometric Morphometrics and Environmental Archaeology

  • Reference work entry
Encyclopedia of Global Archaeology
  • 504 Accesses

Introduction

History and Development of Geometric Morphometrics

The study of biological shape (morphometrics) involves the analysis of anatomical variation of an organism or its constituent parts. Geometric morphometrics (GMM) has taken advantage of contemporary developments in computing technology and statistical objectivity to establish a means of shape analysis that is mathematically derived, allowing comparisons of shape to be performed quantitatively. The main advantage that GMM has over traditional morphometrics (TMM) is that the latter inherently deals with size, not shape. While descriptions of size variation are useful, shape can inform on a greater range of biological processes, such as ontogeny, and adaptation to specific ecological niches (Zelditch et al.2004).

Morphometric analysis is rooted in biological research with key advances made during the last decade. However, if one considers that both taxonomic classification and our understanding of biological diversity are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, D.C., F.J. Rohlf & D.E. Slice. 2004. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71: 5-16.

    Google Scholar 

  • Adams, D.C., A. Cardini, L.R Monteiro, P.O’Higgins & F.J. Rohlf. 2011. Morphometrics and phylogenetics: principal components of shape from cranial modules are neither appropriate nor effective cladistic characters. Journal of Human Evolution 60: 240–43.

    Google Scholar 

  • Aguirre, M.L., S.I. Perez & Y. N. Sirch. 2006. Morphological variability of Brachidontes Swainson (Bivalvia, Mytilidae) in the marine Quaternary of Argentina (SW Atlantic). Palaeogeography, Palaeoclimatology, Palaeoecology 239: 100–25.

    Google Scholar 

  • Bignon, O., M. Baylac, J.-D. Vigne & V. Eisenmann. 2005. Geometric morphometrics and the population diversity of late glacial horses in western Europe (Equus caballus arcelini): phylogeographic and anthropological implications. Journal of Archaeological Science 32: 375-91.

    Google Scholar 

  • Bookstein, F. L. 1997.Morphometric tools for landmark data. Geometry and biology. New York: Cambridge University Press.

    Google Scholar 

  • Cardini, A., A. Jansson & S. Elton. 2007. A geometric morphometric approach to the study of ecogeographical and clinal variation in vervet monkeys. Journal of Biogeography 34: 1663-78.

    Google Scholar 

  • Claude, J. 2008. Morphometrics with R. New York: Springer.

    Google Scholar 

  • Crews, S.C. & M. Hedin. 2006. Studies of morphological and molecular phylogenetic divergence in spiders (Araneae: Homalonychus) from the American southwest, including divergence along the Baja California Peninsula. Molecular Phylogenetics & Evolution 38: 470-87.

    Google Scholar 

  • Cucchi, T., A. Hulme-Beaman & K. Dobney. 2011. Early Neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. Journal of Archaeological Science 38: 11-22.

    Google Scholar 

  • David, B. & B. Laurin. 1996. Morphometrics and cladistics: measuring phylogeny in the sea urchin Echinocardium. Evolution 50: 348-59.

    Google Scholar 

  • Dujardin, J.-P., C.B. Beard & R. Ryckman. 2007. The relevance of wing geometry in entomological surveillance of Triatominae, vectors of Chagas disease. Infection, Genetics and Evolution 7: 161–67.

    Google Scholar 

  • Figueirido, B. P., J.A. Palmqvist & J. A. Pérez-Claros. 2009. Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: an approach based on geometric morphometrics. Journal of Zoology 277: 70-80.

    Google Scholar 

  • Gunz, P., P. Mitteroecker, S. Neubauer, G.W. Weber & F. L. Bookstein. 2009. Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution 57: 48–62.

    Google Scholar 

  • Hublin, J.-J., D. Weston, P. Gunz, M. Richards, W. Roebroeks, J. Glimmerveen & L. Anthonis. 2009. Out of the North Sea: the Zeeland Ridges Neandertal. Journal of Human Evolution 57: 777-85.

    Google Scholar 

  • Klingenberg, C.P. & L.R. Monteiro. 2005. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology 54: 678-688.

    Google Scholar 

  • Larson, G., T. Cucchi, M. Fujita, E. Matisoo-Smith, J. Robins, A. Anderson, B. Rolet, M. Spriggs, G. Dolman, T.H. Kim, E. Randi, D. Doherty, R. Awe Due, R. Bolt, T. Djiubiantono, B. Griffin, M. Intoh, E. Keane, P. Kirch, K.-T., Li, M. Morwood, L.M. Pedrina, P.J. Piper, R.J. Rabett, P. Shooter, G. van den Bergh, E. West, S. Wickler, J. Yuan, A. Cooper & K. Dobney. 2007. Phylogeny and ancient DNA of Sus provides new insights into Neolithic expansion in Island Southeast Asia and Oceania. Proceedings of the National Academy of Sciences 104: 4834–9.

    Google Scholar 

  • Rohlf, F. J. & L. F. Marcus. 1993. A revolution in morphometrics. TREE 8: 129-32.

    Google Scholar 

  • Seetah, T.K., A. Cardini, & P. Miracle. 2012. Can morphospace shed light on cave bear spatial-temporal variation? Population dynamics of Ursus spelaeus from Romualdova pecina and Vindija, (Croatia). Journal of Archeaological Science 39: 500-10.

    Google Scholar 

  • Thompson, D. 1917.On growth and form. Cambridge: Cambridge University Press.

    Google Scholar 

  • Viscosi, V. & A. Cardini. 2011. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PLoS ONE 6: e25630. doi:10.1371/journal.pone.0025630.

    Google Scholar 

  • Zelditch, M., D. Swiderski, H. D. Sheets & W. L. Fink. 2004. Geometric morphometrics for biologists: a primer. San Diego: Academic Press.

    Google Scholar 

Further Reading

  • Bookstein, F. L. 1997.Morphometric tools for landmark data. Geometry and biology. New York: Cambridge University Press.

    Google Scholar 

  • Claude, J. 2008. Morphometrics with R. New York: Springer.

    Google Scholar 

  • Thompson, D. 1994.On growth and form. Cambridge: Cambridge University Press.

    Google Scholar 

  • Zelditch, M. D., Swiderski, H. D. Sheets & W. L. Fink. 2004. Geometric morphometrics for biologists: a primer. San Diego: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Krish Seetah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Seetah, T.K. (2014). Geometric Morphometrics and Environmental Archaeology. In: Smith, C. (eds) Encyclopedia of Global Archaeology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0465-2_2123

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0465-2_2123

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0426-3

  • Online ISBN: 978-1-4419-0465-2

  • eBook Packages: Humanities, Social Sciences and Law

Publish with us

Policies and ethics