Encyclopedia of Global Archaeology

2014 Edition
| Editors: Claire Smith

Floors and Occupation Surface Analysis in Archaeology

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0465-2_1304

Introduction

In the same way modern carpets reflect the activities of their owners, occupation surfaces can tell many things about their users. Looking at the characteristics of the carpet once it has been removed from the floor of the whole house, one can realize that there are worn areas, consequence of intense transit and intact zones normally placed under heavy furniture. It is also possible to differentiate between clean areas and dirty parts of the carpet containing many residues spelt on the surface. Then, after a careful study of this carpet, it is possible to reconstruct most of the everyday activities of its users.

The same happens with the study of archaeological structures. In the case of occupation surfaces, it is now possible to use this approach to try to understand how people lived in the past. Traditionally, archaeological artifact distribution and architecture have suggested the way spaces were used. In recent times, chemical residues detected in the porous of floors...

This is a preview of subscription content, log in to check access

References

  1. Barba,1980. El análisis de fosfatos como herramienta de prospección y delimitación. Proceedings XVI Mesa Redonda de la Sociedad Mexicana de Antropología, II, 267-74.Google Scholar
  2. - 1990. El uso del análisis de fosfato en sitios arqueológicos de Xochipala, Guerrero, in P. Schmidt Arqueología de Xochipala: 257–72. México: IIA, UNAM.Google Scholar
  3. - 2007. Chemical residues in lime plastered archaeological floors. Geoarchaeology 22(3): 439–53.Google Scholar
  4. Barba, L. & A. Ortiz. 1992. Análisis químico de pisos de ocupación: un caso etonográfico en Tlaxcala, México. Latin American Antiquity 3: 63-82.Google Scholar
  5. Barba, L., D. Barca, J. Blancas, G.M. Crisci, L. Manzanilla, D. Miriello, A. Ortiz & A. Pecci. 2009. Provenance of the limestone used in Teotihuacan (Mexico). A methodological approach. Archaeometry, 51:525–45.Google Scholar
  6. Bull, I.D., M.M. Elhmmali, D.J. Roberts & R.P. Evershed. 2003. The application of steroid biomarkers to track the abandonment of a roman water course at the Agora (Athens, Greece). Archaeometry 45: 149–61.Google Scholar
  7. Charters, S., R.P. Evershed, A. Quye, P.W. Blinkhorn & V. Reeves. 1997. Simulation experiments for determining the use of ancient pottery vessels: the behavior of epicuticular leaf wax during boiling of a leafy vegetable. Journal of Archaeological Science 27: 1-27.Google Scholar
  8. Evershed, R., S.N. Dudd & M.J. Lockehart. 2005. Lipids in Archaeology, in D.R. Brothwell & A.M. Pollard (ed.) Archaeological Science: 331-350. Chichester: Wiley.Google Scholar
  9. Guash-Jané, M.R., M. Iberno Gómez, C. Andr és-Lacueva, O. Jáuregui & R.M. Lamuela-raventós. 2004. Liquid chromatography with mass spectrometry in Tandem mode applied for the identification of wine markers in residues from ancient Egyptian vessels. Analytical Chemistry 76: 1672–77.Google Scholar
  10. Hirth, K.G. 1975. Estudios de fosfatos en el contexto de arqueología. Vínculos 2: 99–102.Google Scholar
  11. Holliday, V. T. & W. G. Gartner. 2007. Methods of soil P analysis in archaeology. Journal of Archaeological Science 34: 301-33.Google Scholar
  12. Middleton, W.D. & T.D. Price. 1996. Chemical analysis of modern and archaeological house floors by means of inductively coupled plasma- atomic emission spectroscopy. Journal of Archaeological Science 23: 673–87.Google Scholar
  13. Middleton, W.D., T.D. Price & D.C. Mieggs. 2005. Chemical analysis of floor sediments for the identification of anthropogenic activity residues, in I. Hodder (ed.) Inhabiting Çatalhöyük: reports from the 1995-99 seasons: 399–412. Cambridge: McDonald Institute Monographs/British Institute of Archaeology at Ankara.Google Scholar
  14. Middleton, W.D., L. Barba, A. Pecci, J. Burton, A. Ortiz, L. Salvini & R. Rodriguez. 2010. The study of archaeological floors. Methodological proposal for the analysis of anthropogenic residues by spot test, ICP-OES and GC-MS. Journal of Archaeological Method and Theory 17:183-208.Google Scholar
  15. Mottram, H.R., S.N. Dudd, G.J. Lawrence, A.W. Stott & R.P. Everhed. 1999. New chromatographic, mass spectrometric and stable isotope approaches to the classification of degraded animal fats preserved in archaeological pottery. Journal of Chromatography A:833: 209–21.Google Scholar
  16. Pecci,A. 2009. Analisi chimiche delle superfici pavimentali: un contributo all’interpretazione funzionale degli spazi archeologici, in G. Volpe & P. Favia (ed.) V Congresso Nazionale di Archeologia Medievale: 105-10. Borgo S. Lorenzo: All´Insegna del Giglio.Google Scholar
  17. Pepe,C., P. Dizabo, P. Scribe, J. Dagaut, J. Fillaux & A. Saliot. 1989. Les marqueurs biogeochimiques: application a l'archeologie. Revue d'Archeometrie 13: 1–11.Google Scholar
  18. Terry, R.E., F.G. Ferná ndez, J.J. Parnell, & T. Inomata. 2004. The story in the floors: chemical signatures of ancient and modern Maya activities at Aguateca, Guatemala. Journal of Archaeological Science 31: 1237–50.Google Scholar
  19. Wells, E.C., R.E. Terry, P.J. Hardin, J.J. Parnell, S.D. Houston & M.W. Jackson. 2000. Chemical analyses of ancient anthrosols in residential areas at Piedras Negras, Guatemala. Journal of Archaeological Science 27: 449–62.Google Scholar
  20. Wells, E.C. & J. E. Moreno Cortés. 2010. Chimie du sol et activités humaines anciennes. Les exemples archéologiques du Mexique et d’Amérique centrale. Étude et Gestion des Sols 17(1): 59–70.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratorio de Prospección ArqueológicaInstituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Circuito exterior de Ciudad UniversitariaMéxicoMexico