Encyclopedia of Signaling Molecules

2012 Edition
| Editors: Sangdun Choi

Delta Glutamate Receptor (GluD1, GluD2)

  • Kazuhisa Kohda
  • Wataru Kakegawa
  • Michisuke Yuzaki
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0461-4_642


 GluRδ1;  GluRδ2;  GluD1;  GluD2

Historical Background

The δ1 glutamate receptor (GluRδ1; GluD1) and the δ2 glutamate receptor (GluRδ2; GluD2) were cloned by homology screening in 1993 at the end of the “gold rush” for cloning of ionotropic glutamate receptor (iGluR) cDNA. They were regarded as orphan receptors for a long time since their endogenous ligands were unknown. GluD1 is highly expressed in hair cells of the auditory and vestibular systems in adult mice. Indeed, deletion of a gene encoding GluD1 (grid1) in mice leads to deficit in high-frequency hearing. In contrast, GluD2 is highly expressed in cerebellar Purkinje cells and deletion of a gene encoding GluD2 (grid2) results in cerebellar ataxia and characteristic phenotypes at parallel fiber (PF)–Purkinje cell synapses. Functionally, long-term depression (LTD) of synaptic transmission, which is thought to underlie motor coordination and motor learning, is completely blunted. Morphologically, approximately 40% of...

This is a preview of subscription content, log in to check access.


  1. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet. 2005;77:918–36.PubMedCrossRefGoogle Scholar
  2. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459:569–73.PubMedCrossRefGoogle Scholar
  3. Guo SZ, Huang K, Shi YY, Tang W, Zhou J, Feng GY, et al. A case-control association study between the GRID1 gene and schizophrenia in the Chinese Northern Han population. Schizophr Res. 2007;93:385–90.PubMedCrossRefGoogle Scholar
  4. Hirai H, Miyazaki T, Kakegawa W, Matsuda S, Mishina M, Watanabe M, et al. Rescue of abnormal phenotypes of the delta2 glutamate receptor-null mice by mutant delta2 transgenes. EMBO Rep. 2005;6:90–5.PubMedCrossRefGoogle Scholar
  5. Kakegawa W, Miyazaki T, Hirai H, Motohashi J, Mishina M, Watanabe M, et al. Ca2+ permeability of the channel pore is not essential for the delta2 glutamate receptor to regulate synaptic plasticity and motor coordination. J Physiol. 2007a;579:729–35.PubMedCrossRefGoogle Scholar
  6. Kakegawa W, Kohda K, Yuzaki M. The delta2 ‘ionotropic’ glutamate receptor functions as a non-ionotropic receptor to control cerebellar synaptic plasticity. J Physiol. 2007b;584:89–96.PubMedCrossRefGoogle Scholar
  7. Kakegawa W, Miyazaki T, Emi K, Matsuda K, Kohda K, Motohashi J, et al. Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRdelta2. J Neurosci. 2008;28:1460–8.PubMedCrossRefGoogle Scholar
  8. Kakegawa W, Miyazaki T, Kohda K, Matsuda K, Emi K, Motohashi J, et al. The N-terminal domain of GluD2 (GluRdelta2) recruits presynaptic terminals and regulates synaptogenesis in the cerebellum in vivo. J Neurosci. 2009;29:5738–48.PubMedCrossRefGoogle Scholar
  9. Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, et al. D-serine regulates cerebellar LTD and motor coordination through the delta2 glutamate receptor. Nat Neurosci. 2011;14:603–11.PubMedCrossRefGoogle Scholar
  10. Kohda K, Wang Y, Yuzaki M. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat Neurosci. 2000;3:315–22.PubMedCrossRefGoogle Scholar
  11. Kohda K, Kakegawa W, Matsuda S, Nakagami R, Kakiya N, Yuzaki M. The extreme C-terminus of GluRdelta2 is essential for induction of long-term depression in cerebellar slices. Eur J Neurosci. 2007;25:1357–62.PubMedCrossRefGoogle Scholar
  12. Matsuda K, Yuzaki M. Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions. Eur J Neurosci. 2011;33:1447–61.PubMedCrossRefGoogle Scholar
  13. Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, et al. Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science. 2010;328:363–8.PubMedCrossRefGoogle Scholar
  14. Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, et al. Ionotropic glutamate-like receptor delta2 binds D-serine and glycine. Proc Natl Acad Sci USA. 2007;104:14116–21.PubMedCrossRefGoogle Scholar
  15. Smith M, Spence MA, Flodman P. Nuclear and mitochondrial genome defects in autisms. Ann NY Acad Sci. 2009;1151:102–32.PubMedCrossRefGoogle Scholar
  16. Treutlein J, Muhleisen TW, Frank J, Mattheisen M, Herms S, Ludwig KU, et al. Dissection of phenotype reveals possible association between schizophrenia and Glutamate Receptor Delta 1 (GRID1) gene promoter. Schizophr Res. 2009;111:123–30.PubMedCrossRefGoogle Scholar
  17. Yadav R, Rimerman R, Scofield MA, Dravid SM. Mutations in the transmembrane domain M3 generate spontaneously open orphan glutamate delta 1 receptor. Brain Res. 2011;1382:1–8.PubMedCrossRefGoogle Scholar
  18. Yamasaki M, Miyazaki T, Azechi H, Abe M, Natsume R, Hagiwara T, et al. Glutamate receptor delta2 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells. J Neurosci. 2011;31:3362–74.PubMedCrossRefGoogle Scholar
  19. Yuzaki M. Delta receptors. In: Gereau RW, Swanson GT, editors. The glutamate receptors. Totowa: Humana; 2008.Google Scholar
  20. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997;388:769–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kazuhisa Kohda
    • 1
  • Wataru Kakegawa
    • 1
  • Michisuke Yuzaki
    • 1
  1. 1.Department of Neurophysiology, School of MedicineKeio UniversityShinjuku-kuJapan